Search results

1 – 10 of over 5000
Article
Publication date: 8 March 2011

Jianhua Dai, Helder Pinheiro, Jonathan P. Webb and Igor Tsukerman

The purpose of this paper is to extend the generalized finitedifference calculus of flexible local approximation methods (FLAME) to problems where local analytical solutions are…

Abstract

Purpose

The purpose of this paper is to extend the generalized finitedifference calculus of flexible local approximation methods (FLAME) to problems where local analytical solutions are unavailable.

Design/methodology/approach

FLAME uses accurate local approximations of the solution to generate difference schemes with small consistency errors. When local analytical approximations are too complicated, semi‐analytical or numerical ones can be used instead. In the paper, this strategy is applied to electrostatic multi‐particle simulations and to electromagnetic wave propagation and scattering. The FLAME basis is constructed by solving small local finite‐element problems or, alternatively, by a local multipole‐multicenter expansion. As yet another alternative, adaptive FLAME is applied to problems of wave propagation in electromagnetic (photonic) crystals.

Findings

Numerical examples demonstrate the high rate of convergence of new five‐ and nine‐point schemes in 2D and seven‐ and 19‐point schemes in 3D. The accuracy of FLAME is much higher than that of the standard FD scheme. This paves the way for solving problems with a large number of particles on relatively coarse grids. FLAME with numerical bases has particular advantages for the multi‐particle model of a random or quasi‐random medium.

Research limitations/implications

Irregular stencils produced by local refinement may adversely affect the accuracy. This drawback could be rectified by least squares FLAME, where the number of stencil nodes can be much greater than the number of basis functions, making the method more robust and less sensitive to the irregularities of the stencils.

Originality/value

Previous applications of FLAME were limited to purely analytical basis functions. The present paper shows that numerical bases can be successfully used in FLAME when analytical ones are not available.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 September 2014

Seyed Mahmoud Hosseini

The purpose of this paper is to propose a hybrid mesh-free method based on generalized finite difference (GFD) and Newmark finite difference methods to study the elastic wave…

108

Abstract

Purpose

The purpose of this paper is to propose a hybrid mesh-free method based on generalized finite difference (GFD) and Newmark finite difference methods to study the elastic wave propagation in functionally graded nanocomposite reinforced by carbon nanotubes (FGNRCN). The presented hybrid mesh-free method is applied for a thick hollow cylinder, which is made of FGNRCN and excited by various mechanical shock loadings.

Design/methodology/approach

The FG nanocomposite cylinder is assumed to be under shock loading. The elastic wave propagation is obtained and studied for various nonlinear grading patterns and distributions of the aligned carbon nanotubes. The distribution of carbon naotubes in FG nanocomposite are considered to vary as nonlinear function of radius, which varies with various nonlinear grading patterns continuously through radial direction. The effective material properties of functionally graded carbon nanotube are estimated using a micro-mechanical model.

Findings

The mechanical shock analysis of FGNRCN thick hollow cylinder is carried out and the dynamic behavior of displacement field and the time history of radial displacement are obtained for various grading patterns. An effective hybrid mesh-free method based on GFD and Newmark finite difference methods is presented to calculate the average velocity of elastic wave propagation in FGNRCN. The average velocity of elastic wave propagation is obtained for various grading patterns and various kinds of volume fraction. The effects of some parameters on average velocity of elastic wave propagation are obtained and studied in detail.

Originality/value

The calculation of elastic radial wave propagation in a FGNRCN thick hollow cylinder is presented using a hybrid mesh-free method. The effects of some parameters on wave propagation such as various grading patterns of distribution of carbon nanotubes are studied in details.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1996

L. De Biase, F. Feraudi and V. Pennati

A new finite volume (FV) method is proposed for the solution ofconvection‐diffusion equations defined on 2D convex domains of general shape.The domain is approximated by a…

Abstract

A new finite volume (FV) method is proposed for the solution of convection‐diffusion equations defined on 2D convex domains of general shape. The domain is approximated by a polygonal region; a structured non‐uniform mesh is defined; the domain is partitioned in control volumes. The conservative form of the problem is solved by imposing the law to be verified on each control volume. The dependent variable is approximated to the second order by means of a quadratic profile. When, for the hyperbolic equation, discontinuities are present, or when the gradient of the solution is very high, a cubic profile is defined in such a way that it enjoys unidirectional monotonicity. Numerical results are given.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 July 2023

Mas Irfan P. Hidayat, Azzah D. Pramata and Prima P. Airlangga

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth…

Abstract

Purpose

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth directions under the influence of multiple crack parameters.

Design/methodology/approach

To determine the crack-growth direction in aluminum specimens, multiple crack parameters representing some degree of crack propagation complexity, including crack length, inclination angle, offset and distance, were examined. FE method models were developed for multiple crack growth simulations. To capture the complex relationships among multiple crack-growth variables, GRNN models were developed as nonlinear regression models. Six input variables and one output variable comprising 65 training and 20 test datasets were established.

Findings

The FE model could conveniently simulate the crack-growth directions. However, several multiple crack parameters could affect the simulation accuracy. The GRNN offers a reliable method for modeling the growth of multiple cracks. Using 76% of the total dataset, the NN model attained an R2 value of 0.985.

Research limitations/implications

The models are presented for static multiple crack growth problems. No material anisotropy is observed.

Practical implications

In practical crack-growth analyses, the NN approach provides significant benefits and savings.

Originality/value

The proposed GRNN model is simple to develop and accurate. Its performance was superior to that of other NN models. This model is also suitable for modeling multiple crack growths with arbitrary geometries. The proposed GRNN model demonstrates its prediction capability with a simpler learning process, thus producing efficient multiple crack growth predictions and assessments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 May 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Afaq Salman Alwan

This paper aims to introduce a new numerical approach based on the local weak form and the Petrov–Galerkin idea to numerically simulation of a predator–prey system with…

Abstract

Purpose

This paper aims to introduce a new numerical approach based on the local weak form and the Petrov–Galerkin idea to numerically simulation of a predator–prey system with two-species, two chemicals and an additional chemotactic influence.

Design/methodology/approach

In the first proceeding, the space derivatives are discretized by using the direct meshless local Petrov–Galerkin method. This generates a nonlinear algebraic system of equations. The mentioned system is solved by using the Broyden’s method which this technique is not related to compute the Jacobian matrix.

Findings

This current work tries to bring forward a trustworthy and flexible numerical algorithm to simulate the system of predator–prey on the nonrectangular geometries.

Originality/value

The proposed numerical results confirm that the numerical procedure has acceptable results for the system of partial differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 June 2019

Ewa Majchrzak and Bohdan Mochnacki

The purpose of this paper is the application of the finite difference method (FDM) for numerical modeling of the microscale heat transfer processes occurring in the domain of thin…

Abstract

Purpose

The purpose of this paper is the application of the finite difference method (FDM) for numerical modeling of the microscale heat transfer processes occurring in the domain of thin metal film subjected to a laser pulse. The problem discussed is described by the different variants of the second-order dual-phase-lag equation (DPLE). The laser action is taken into account by the introduction of internal volumetric heat source to the governing equation. The capacity of the source is dependent on the geometrical co-ordinates and duration of the laser beam. The modified forms of DPLE presented in the paper, resulting from the certain substitutions introduced to the basic equation.

Design/methodology/approach

At the stage of numerical computations, the different variants of the FDM are applied. Both the explicit and implicit FDM schemes are used. The formula determining the capacity of the internal heat source suggests the formulation of the task discussed using the cylindrical co-ordinate system. The in-house programs realizing the numerical computations concern the axially-symmetrical tasks. In this paper, the metal films made of the nickel and gold are considered.

Findings

The algorithms presented make possible to analyze the heating/cooling processes occurring in the domain of metal film having a thickness Z for the different laser parameters (laser intensity, characteristic time of laser pulse and laser beam radius) and the different materials (optical penetration depth, reflectivity of irradiated surface, lag times, thermal conductivity and volumetric specific heat).

Research limitations/implications

Not for all metals, one can find information on lag times. In the literature, analytical formulas can be found to calculate these values, but they are strongly approximated. It should be pointed out that there are some limitations concerning the delay times of material considered, which assure the physical correctness of the second-order DPLE.

Originality/value

The FDM algorithm concerns the three-dimensional cylindrical domain while a large majority of the second-order DPLE numerical solutions have been obtained for the one-dimensional tasks. Both the implicit and explicit numerical schemes are proposed and the testing computations confirm the correctness and effectiveness of the algorithms presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2021

A. A. Alanazi, Sultan Z. Alamri, S. Shafie and Shazirawati Mohd Puzi

The purpose of this paper is to obtain the nonlinear Schrodinger equation (NLSE) numerical solutions in the presence of the first-order chromatic dispersion using a second-order…

Abstract

Purpose

The purpose of this paper is to obtain the nonlinear Schrodinger equation (NLSE) numerical solutions in the presence of the first-order chromatic dispersion using a second-order, unconditionally stable, implicit finite difference method. In addition, stability and accuracy are proved for the resulting scheme.

Design/methodology/approach

The conserved quantities such as mass, momentum and energy are calculated for the system governed by the NLSE. Moreover, the robustness of the scheme is confirmed by conducting various numerical tests using the Crank-Nicolson method on different cases of solitons to discuss the effects of the factor considered on solitons properties and on conserved quantities.

Findings

The Crank-Nicolson scheme has been derived to solve the NLSE for optical fibers in the presence of the wave packet drift effects. It has been founded that the numerical scheme is second-order in time and space and unconditionally stable by using von-Neumann stability analysis. The effect of the parameters considered in the study is displayed in the case of one, two and three solitons. It was noted that the reliance of NLSE numeric solutions properties on coefficients of wave packets drift, dispersions and Kerr nonlinearity play an important control not only the stable and unstable regime but also the energy, momentum conservation laws. Accordingly, by comparing our numerical results in this study with the previous work, it was recognized that the obtained results are the generalized formularization of these work. Also, it was distinguished that our new data are regarding to the new communications modes that depend on the dispersion, wave packets drift and nonlinearity coefficients.

Originality/value

The present study uses the first-order chromatic. Also, it highlights the relationship between the parameters of dispersion, nonlinearity and optical wave properties. The study further reports the effect of wave packet drift, dispersions and Kerr nonlinearity play an important control not only the stable and unstable regime but also the energy, momentum conservation laws.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 May 2021

M.J. Huntul, Mohammad Tamsir and Abdullah Ahmadini

The paper aims to numerically solve the inverse problem of determining the time-dependent potential coefficient along with the temperature in a higher-order Boussinesq-Love…

Abstract

Purpose

The paper aims to numerically solve the inverse problem of determining the time-dependent potential coefficient along with the temperature in a higher-order Boussinesq-Love equation (BLE) with initial and Neumann boundary conditions supplemented by boundary data, for the first time.

Design/methodology/approach

From the literature, the authors already know that this inverse problem has a unique solution. However, the problem is still ill-posed by being unstable to noise in the input data. For the numerical realization, the authors apply the generalized finite difference method (GFDM) for solving the BLE along with the Tikhonov regularization to find stable and accurate numerical solutions. The regularized nonlinear minimization is performed using the MATLAB subroutine lsqnonlin. The stability analysis of solution of the BLE is proved using the von Neumann method.

Findings

The present numerical results demonstrate that obtained solutions are stable and accurate.

Practical implications

Since noisy data are inverted, the study models real situations in which practical measurements are inherently contaminated with noise.

Originality/value

The knowledge of this physical property coefficient is very important in various areas of human activity such as seismology, mineral exploration, biology, medicine, quality control of industrial products, etc. The originality lies in the insight gained by performing the numerical simulations of inversion to find the potential co-efficient on time in the BLE from noisy measurement.

Article
Publication date: 1 April 1992

S. BRANDON and J.J. DERBY

A finite element method for the analysis of combined radiative and conductive heat transport in a finite axisymmetric configuration is presented. The appropriate…

Abstract

A finite element method for the analysis of combined radiative and conductive heat transport in a finite axisymmetric configuration is presented. The appropriate integro‐differential governing equations for a grey and non‐scattering medium with grey and diffuse walls are developed and solved for several model problems. We consider axisymmetric, cylindrical geometries with top and bottom boundaries of arbitrary convex shape. The method is accurate for media of any optical thickness and is capable of handling a wide array of axisymmetric geometries and boundary conditions. Several techniques are presented to reduce computational overhead, such as employing a Swartz‐Wendroff approximation and cut‐off criteria for evaluating radiation integrals. The method is successfully tested against several cases from the literature and is applied to some additional example problems to demonstrate its versatility. Solution of a free‐boundary, combined‐mode heat transfer problem representing the solidification of a semitransparent material, the Bridgman growth of an yttrium aluminium garnet (YAG) crystal, demonstrates the utility of this method for analysis of a complex materials processing system. The method is suitable for application to other research areas, such as the study of glass processing and the design of combustion furnace systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2001

Suvranu De and Klaus‐Jürgen Bathe

Computational efficiency and reliability are clearly the most important requirements for the success of a meshless numerical technique. While the basic ideas of meshless…

Abstract

Computational efficiency and reliability are clearly the most important requirements for the success of a meshless numerical technique. While the basic ideas of meshless techniques are simple and well understood, an effective meshless method is very difficult to develop. The efficiency depends on the proper choice of the interpolation scheme, numerical integration procedures and techniques of imposing the boundary conditions. These issues in the context of the method of finite spheres are discussed.

Details

Engineering Computations, vol. 18 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 5000