Search results

21 – 30 of over 5000
Article
Publication date: 16 January 2007

B. Mendez and A. Velazquez

The purpose of this paper is to present numerical study on the behaviour of 2D unsteady incompressible laminar wakes behind square cylinders.

Abstract

Purpose

The purpose of this paper is to present numerical study on the behaviour of 2D unsteady incompressible laminar wakes behind square cylinders.

Design/methodology/approach

The numerical method that has been developed is based on a finite point formulation characterised by its weak connectivity requirements. This formulation allows for a patched unstructured approach to computational domain modelling that is of interest for industrial applications. Time evolution of pressure is computed by using a pseudo‐compressibility relaxation model that is based on physical considerations.

Findings

This model is characterised by the fact that no sub‐iterations on a numerical pseudo‐time are required so that computational efficiency is increased. Algorithm stability requires the use of second and fourth order artificial viscosity operators that effectively change the order of the equations. A discussion is included regarding the boundary conditions for these operators that do not influence vortex shedding behaviour.

Research limitations/implications

Bearing in mind the industrial drive (MEMS design) that the authors have in mind, solver validation has been addressed at two levels: global coefficients (lift, drag and Strouhal number) were compared with those published in the specialised literature, while local velocity and rms profiles were compared with those obtained after performing a specific low velocity wind tunnel testing campaign (Reynolds numbers in the range from 110 to 268).

Practical implications

A sensitivity analysis of the results obtained is presented and it shows that the solver numerical robustness makes it amenable for project oriented applications.

Originality/value

The formulation being presented is competitive and could be considered as a potential alternative to other approaches.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2003

Eugeniusz Zieniuk

This paper presents a modification of the classical boundary integral equation method (BIEM) for two‐dimensional potential boundary‐value problem. The proposed modification…

Abstract

This paper presents a modification of the classical boundary integral equation method (BIEM) for two‐dimensional potential boundary‐value problem. The proposed modification consists in describing the boundary geometry by means of Hermite curves. As a result of this analytical modification of the boundary integral equation (BIE), a new parametric integral equation system (PIES) is obtained. The kernels of these equations include the geometry of the boundary. This new PIES is no longer defined on the boundary, as in the case of the BIE, but on the straight line for any given domain. The solution of the new PIES does not require boundary discretization as it can be reduced merely to an approximation of boundary functions. To solve this PIES a pseudospectral method has been proposed and the results obtained compared with exact solutions.

Details

Engineering Computations, vol. 20 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 July 2016

Qingdong Zhang, Boyang Zhang and Xingfu Lu

The purpose of this paper is to propose a hybridization numerical method to solve the plastic deformation of metal working based on the flow function method and meshless method…

Abstract

Purpose

The purpose of this paper is to propose a hybridization numerical method to solve the plastic deformation of metal working based on the flow function method and meshless method.

Design/methodology/approach

The proposed method is named as flow function-element free Galerkin (F-EFG) method. It uses the flow function as the basic unknown quantity to get the basic control equation, the compactly supported approximate function to establish a local approximate flow function by means of moving least square approximation, and the element free Galerkin (EFG) method to solve variational equation. The F-EFG method takes the upper limit method essence of flow function method, and the convergence, stability, and error characteristics of EFG method.

Findings

The steady extrusion process of the axisymmetric extrusion problems as well as the extrusion deformation law and main field variables are subjects in the modeling and simulation analysis using F-EFG method. The results show that the F-EFG method has good computational efficiency and accuracy.

Originality/value

The F-EFG method proposed in this paper has the advantages of high-solution precision of flow function method and large deformation solution of element free method. It overcomes the difficulties in global flow function establishment in flow function method and low-solution efficiency in element free method. The method is beneficial to the development of flow function method and element free method.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 July 2022

Chuanbao Nie, Bowen Fu and Qiang Gao

This paper aims to develop an efficient numerical method for nonlinear transient heat conduction problems with local radiation boundary conditions and nonlinear heat sources.

Abstract

Purpose

This paper aims to develop an efficient numerical method for nonlinear transient heat conduction problems with local radiation boundary conditions and nonlinear heat sources.

Design/methodology/approach

Based on the physical characteristic of the transient heat conduction and the distribution characteristic of the Green’s function, a quasi-superposition principle is presented for the transient heat conduction problems with local nonlinearities. Then, an efficient method is developed, which indicates that the solution of the original nonlinear problem can be derived by solving some nonlinear problems with small structures and a linear problem with the original structure. These problems are independent of each other and can be solved simultaneously by the parallel computing technique.

Findings

Within a small time step, the nonlinear thermal loads can only induce significant temperature responses of the regions near the positions of the nonlinear thermal loads, whereas the temperature responses of the remaining regions are very close to zero. According to the above physical characteristic, the original nonlinear problem can be transformed into some nonlinear problems with small structures and a linear problem with the original structure.

Originality/value

An efficient and accurate numerical method is presented for transient heat conduction problems with local nonlinearities, and some numerical examples demonstrate the high efficiency and accuracy of the proposed method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2015

Boštjan Mavrič and Božidar Šarler

The purpose of this paper is to upgrade our previous developments of Local Radial Basis Function Collocation Method (LRBFCM) for heat transfer, fluid flow and electromagnetic…

Abstract

Purpose

The purpose of this paper is to upgrade our previous developments of Local Radial Basis Function Collocation Method (LRBFCM) for heat transfer, fluid flow and electromagnetic problems to thermoelastic problems and to study its numerical performance with the aim to build a multiphysics meshless computing environment based on LRBFCM.

Design/methodology/approach

Linear thermoelastic problems for homogenous isotropic body in two dimensions are considered. The stationary stress equilibrium equation is written in terms of deformation field. The domain and boundary can be discretized with arbitrary positioned nodes where the solution is sought. Each of the nodes has its influence domain, encompassing at least six neighboring nodes. The unknown displacement field is collocated on local influence domain nodes with shape functions that consist of a linear combination of multiquadric radial basis functions and monomials. The boundary conditions are analytically satisfied on the influence domains which contain boundary points. The action of the stationary stress equilibrium equation on the constructed interpolation results in a sparse system of linear equations for solution of the displacement field.

Findings

The performance of the method is demonstrated on three numerical examples: bending of a square, thermal expansion of a square and thermal expansion of a thick cylinder. Error is observed to be composed of two contributions, one proportional to a power of internodal spacing and the other to a power of the shape parameter. The latter term is the reason for the observed accuracy saturation, while the former term describes the order of convergence. The explanation of the observed error is given for the smallest number of collocation points (six) used in local domain of influence. The observed error behavior is explained by considering the Taylor series expansion of the interpolant. The method can achieve high accuracy and performs well for the examples considered.

Research limitations/implications

The method can at the present cope with linear thermoelasticity. Other, more complicated material behavior (visco-plasticity for example), will be tackled in one of our future publications.

Originality/value

LRBFCM has been developed for thermoelasticity and its error behavior studied. A robust way of controlling the error was devised from consideration of the condition number. The performance of the method has been demonstrated for a large number of the nodes and on uniform and non-uniform node arrangements.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2019

Zohreh Heydari, Gholamreza Shobeyri and Seyed Hossein Ghoreishi Najafabadi

This paper aims to examine the accuracy of several higher-order incompressible smoothed particle hydrodynamics (ISPH) Laplacian models and compared with the classic model (Shao…

Abstract

Purpose

This paper aims to examine the accuracy of several higher-order incompressible smoothed particle hydrodynamics (ISPH) Laplacian models and compared with the classic model (Shao and Lo, 2003).

Design/methodology/approach

The numerical errors in solving two-dimensional elliptic partial differential equations using the Laplacian models are investigated for regular and highly irregular node distributions over a unit square computational domain.

Findings

The numerical results show that one of the Laplacian models, which is newly developed by one of the authors (Shobeyri, 2019) can get the smallest errors for various used node distributions.

Originality/value

The newly proposed model is formulated by the hybrid of the standard ISPH Laplacian model combined with Taylor expansion and moving least squares method. The superiority of the proposed model is significant when multi-resolution irregular node distributions commonly seen in adaptive refinement strategies used to save computational cost are applied.

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1128

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 November 2011

Jari Kangas, Saku Suuriniemi and Lauri Kettunen

The purpose of this paper is to study algebraic structures that underlie the geometric approaches. The structures and their properties are analyzed to address how to…

Abstract

Purpose

The purpose of this paper is to study algebraic structures that underlie the geometric approaches. The structures and their properties are analyzed to address how to systematically pose a class of boundary value problems in a pair of interlocked complexes.

Design/methodology/approach

The work utilizes concepts of algebraic topology to have a solid framework for the analysis. The algebraic structures constitute a set of requirements and guidelines that are adhered to in the analysis.

Findings

A precise notion of “relative dual complex”, and certain necessary requirements for discrete Hodge‐operators are found.

Practical implications

The paper includes a set of prerequisites, especially for discrete Hodge‐operators. The prerequisites aid, for example, in verifying new computational methods and algorithms.

Originality/value

The paper gives an overall view of the algebraic structures and their role in the geometric approaches. The paper establishes a set of prerequisites that are inherent in the geometric approaches.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 May 1994

A. Corigliano

The finite element quasi‐static analysis of elastoplastic systemsis studied by making use of a generalized variable approach for the spatialdiscretization and a generalized

Abstract

The finite element quasi‐static analysis of elastoplastic systems is studied by making use of a generalized variable approach for the spatial discretization and a generalized mid‐point rule for the time integration. Both the classical form of the constitutive law and the convex analysis formulation are presented. The relation between the mid‐point time integration and the extremal path theory is discussed. Extremal properties for the finite‐step solution are formulated.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1987

Zbigniew Mańko

While calculating internal forces of a structure resulting from temperature it is necessary to know thermal conduction and what goes hand in hand to determine temperature…

Abstract

While calculating internal forces of a structure resulting from temperature it is necessary to know thermal conduction and what goes hand in hand to determine temperature distribution at various points of the analysed structures. Finite strip method (FSM) is very suitable for the analysis of thermal conduction, heating, heat and temperature distribution in engineering structures, especially rectangular of identical edge conditions. The paper presents several examples of FSM application for the analysis of conduction and heat and temperature distribution for various types of engineering structures which can appear, among others, while welding several joined elements with welds made at specified speed as linear and point welds. Bars, shields, square and rectangular plates, steel orthotropic plates, steel and combined girders (steel‐concrete), box girders subject to various loads connected with heat and temperature (loaded with temperature, non‐uniformly heated surface). The obtained results may be useful in engineering practice for determining actual temperature and load capacity in individual elements of the construction.

Details

Engineering Computations, vol. 4 no. 1
Type: Research Article
ISSN: 0264-4401

21 – 30 of over 5000