Search results

1 – 10 of 362
Article
Publication date: 9 October 2023

Manish Bansal

This paper undertakes an extensive and systematic review of the literature on earnings management (EM) over the past three decades (1992–2022). Furthermore, the study identifies…

Abstract

Purpose

This paper undertakes an extensive and systematic review of the literature on earnings management (EM) over the past three decades (1992–2022). Furthermore, the study identifies emerging research themes and proposes future avenues for further investigation in the realm of EM.

Design/methodology/approach

For this study, a comprehensive collection of 2,775 articles on EM published between 1992 and 2022 was extracted from the Scopus database. The author employed various tools, including Microsoft Excel, R studio, Gephi and visualization of similarities viewer, to conduct bibliometric, content, thematic and cluster analyses. Additionally, the study examined the literature across three distinct periods: prior to the enactment of the Sarbanes-Oxley Act (1992–2001), subsequent to the implementation of the Sarbanes-Oxley Act (2002–2012), and after the adoption of International Financial Reporting Standards (2013–2022) to draw more inferences and insights on EM research.

Findings

The study identifies three major themes, namely the operationalization of EM constructs, the trade-off between EM tools (accrual EM, real EM and classification shifting) and the role of corporate governance in mitigating EM in emerging markets. Existing literature in these areas presents mixed and inconclusive findings, suggesting the need for further theoretical development. Further, the study findings observe a shift in research focus over time: initially, understanding manipulation techniques, then evaluating regulatory measures, and more recently, investigating the impact of global accounting standards. Several emerging research themes (technology advancements, cross-cultural and cross-national studies, sustainability, behavioral aspects and non-financial indicators of EM) have been identified. This study subsequent analysis reveals an evolving EM landscape, with researchers from disciplines like data science, computer science and engineering applying their analytical expertise to detect EM anomalies. Furthermore, this study offers significant insights into sophisticated EM techniques such as neural networks, machine learning techniques and hidden Markov models, among others, as well as relevant theories including dynamic capabilities theory, learning curve theory, psychological contract theory and normative institutional theory. These techniques and theories demonstrate the need for further advancement in the field of EM. Lastly, the findings shed light on prominent EM journals, authors and countries.

Originality/value

This study conducts quantitative bibliometric and thematic analyses of the existing literature on EM while identifying areas that require further development to advance EM research.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 13 February 2024

Aleena Swetapadma, Tishya Manna and Maryam Samami

A novel method has been proposed to reduce the false alarm rate of arrhythmia patients regarding life-threatening conditions in the intensive care unit. In this purpose, the…

Abstract

Purpose

A novel method has been proposed to reduce the false alarm rate of arrhythmia patients regarding life-threatening conditions in the intensive care unit. In this purpose, the atrial blood pressure, photoplethysmogram (PLETH), electrocardiogram (ECG) and respiratory (RESP) signals are considered as input signals.

Design/methodology/approach

Three machine learning approaches feed-forward artificial neural network (ANN), ensemble learning method and k-nearest neighbors searching methods are used to detect the false alarm. The proposed method has been implemented using Arduino and MATLAB/SIMULINK for real-time ICU-arrhythmia patients' monitoring data.

Findings

The proposed method detects the false alarm with an accuracy of 99.4 per cent during asystole, 100 per cent during ventricular flutter, 98.5 per cent during ventricular tachycardia, 99.6 per cent during bradycardia and 100 per cent during tachycardia. The proposed framework is adaptive in many scenarios, easy to implement, computationally friendly and highly accurate and robust with overfitting issue.

Originality/value

As ECG signals consisting with PQRST wave, any deviation from the normal pattern may signify some alarming conditions. These deviations can be utilized as input to classifiers for the detection of false alarms; hence, there is no need for other feature extraction techniques. Feed-forward ANN with the Lavenberg–Marquardt algorithm has shown higher rate of convergence than other neural network algorithms which helps provide better accuracy with no overfitting.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 26 December 2023

Farshad Peiman, Mohammad Khalilzadeh, Nasser Shahsavari-Pour and Mehdi Ravanshadnia

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the…

Abstract

Purpose

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the accuracy and actualization of predicted values. This study primarily aimed to examine natural gradient boosting (NGBoost-2020) with the classification and regression trees (CART) base model (base learner). To the best of the authors' knowledge, this concept has never been applied to EVM AD forecasting problem. Consequently, the authors compared this method to the single K-nearest neighbor (KNN) method, the ensemble method of extreme gradient boosting (XGBoost-2016) with the CART base model and the optimal equation of EVM, the earned schedule (ES) equation with the performance factor equal to 1 (ES1). The paper also sought to determine the extent to which the World Bank's two legal factors affect countries and how the two legal causes of delay (related to institutional flaws) influence AD prediction models.

Design/methodology/approach

In this paper, data from 30 construction projects of various building types in Iran, Pakistan, India, Turkey, Malaysia and Nigeria (due to the high number of delayed projects and the detrimental effects of these delays in these countries) were used to develop three models. The target variable of the models was a dimensionless output, the ratio of estimated duration to completion (ETC(t)) to planned duration (PD). Furthermore, 426 tracking periods were used to build the three models, with 353 samples and 23 projects in the training set, 73 patterns (17% of the total) and six projects (21% of the total) in the testing set. Furthermore, 17 dimensionless input variables were used, including ten variables based on the main variables and performance indices of EVM and several other variables detailed in the study. The three models were subsequently created using Python and several GitHub-hosted codes.

Findings

For the testing set of the optimal model (NGBoost), the better percentage mean (better%) of the prediction error (based on projects with a lower error percentage) of the NGBoost compared to two KNN and ES1 single models, as well as the total mean absolute percentage error (MAPE) and mean lags (MeLa) (indicating model stability) were 100, 83.33, 5.62 and 3.17%, respectively. Notably, the total MAPE and MeLa for the NGBoost model testing set, which had ten EVM-based input variables, were 6.74 and 5.20%, respectively. The ensemble artificial intelligence (AI) models exhibited a much lower MAPE than ES1. Additionally, ES1 was less stable in prediction than NGBoost. The possibility of excessive and unusual MAPE and MeLa values occurred only in the two single models. However, on some data sets, ES1 outperformed AI models. NGBoost also outperformed other models, especially single models for most developing countries, and was more accurate than previously presented optimized models. In addition, sensitivity analysis was conducted on the NGBoost predicted outputs of 30 projects using the SHapley Additive exPlanations (SHAP) method. All variables demonstrated an effect on ETC(t)/PD. The results revealed that the most influential input variables in order of importance were actual time (AT) to PD, regulatory quality (RQ), earned duration (ED) to PD, schedule cost index (SCI), planned complete percentage, rule of law (RL), actual complete percentage (ACP) and ETC(t) of the ES optimal equation to PD. The probabilistic hybrid model was selected based on the outputs predicted by the NGBoost and XGBoost models and the MAPE values from three AI models. The 95% prediction interval of the NGBoost–XGBoost model revealed that 96.10 and 98.60% of the actual output values of the testing and training sets are within this interval, respectively.

Research limitations/implications

Due to the use of projects performed in different countries, it was not possible to distribute the questionnaire to the managers and stakeholders of 30 projects in six developing countries. Due to the low number of EVM-based projects in various references, it was unfeasible to utilize other types of projects. Future prospects include evaluating the accuracy and stability of NGBoost for timely and non-fluctuating projects (mostly in developed countries), considering a greater number of legal/institutional variables as input, using legal/institutional/internal/inflation inputs for complex projects with extremely high uncertainty (such as bridge and road construction) and integrating these inputs and NGBoost with new technologies (such as blockchain, radio frequency identification (RFID) systems, building information modeling (BIM) and Internet of things (IoT)).

Practical implications

The legal/intuitive recommendations made to governments are strict control of prices, adequate supervision, removal of additional rules, removal of unfair regulations, clarification of the future trend of a law change, strict monitoring of property rights, simplification of the processes for obtaining permits and elimination of unnecessary changes particularly in developing countries and at the onset of irregular projects with limited information and numerous uncertainties. Furthermore, the managers and stakeholders of this group of projects were informed of the significance of seven construction variables (institutional/legal external risks, internal factors and inflation) at an early stage, using time series (dynamic) models to predict AD, accurate calculation of progress percentage variables, the effectiveness of building type in non-residential projects, regular updating inflation during implementation, effectiveness of employer type in the early stage of public projects in addition to the late stage of private projects, and allocating reserve duration (buffer) in order to respond to institutional/legal risks.

Originality/value

Ensemble methods were optimized in 70% of references. To the authors' knowledge, NGBoost from the set of ensemble methods was not used to estimate construction project duration and delays. NGBoost is an effective method for considering uncertainties in irregular projects and is often implemented in developing countries. Furthermore, AD estimation models do fail to incorporate RQ and RL from the World Bank's worldwide governance indicators (WGI) as risk-based inputs. In addition, the various WGI, EVM and inflation variables are not combined with substantial degrees of delay institutional risks as inputs. Consequently, due to the existence of critical and complex risks in different countries, it is vital to consider legal and institutional factors. This is especially recommended if an in-depth, accurate and reality-based method like SHAP is used for analysis.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 November 2023

Nenavath Sreenu

This research study aims to delve into the enduring relationship between housing property prices and economic policy uncertainty across eight major Indian cities.

Abstract

Purpose

This research study aims to delve into the enduring relationship between housing property prices and economic policy uncertainty across eight major Indian cities.

Design/methodology/approach

Using the panel non-linear autoregressive distributed lag model, this study meticulously investigates the asymmetric impact of economic policy uncertainty on apartment and house (unit) prices in India during the period from 2000 to 2022.

Findings

The findings of this study indicate that economic policy uncertainty exerts a negative influence on property prices, but noteworthy asymmetry is observed, with positive changes in effect having a more pronounced impact than negative changes. This asymmetrical effect is particularly prominent in the case of unit prices.

Originality/value

This research reveals that long-run price trends are also influenced by factors such as interest rates, building costs and housing loans. Through a comprehensive analysis of these factors and their interplay with property prices, this research paper contributes valuable insights to the understanding of the real estate market dynamics in Indian cities.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 11 August 2021

Bin Zheng, Yi Cai and Kelun Tang

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the…

Abstract

Purpose

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine.

Design/methodology/approach

The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization.

Findings

After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased.

Originality/value

This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 March 2023

Frank Nyanda

This study aims to examine the effect of proximity and spatial dependence on the house price index for the nascent market Dar es Salaam, Tanzania. Despite the ongoing housing…

Abstract

Purpose

This study aims to examine the effect of proximity and spatial dependence on the house price index for the nascent market Dar es Salaam, Tanzania. Despite the ongoing housing market transactions, there is no single house price index that takes into account proximity and spatial dependence. The proximity considerations in question are proximal to arterial roads, public hospitals, an airport and food markets. Previous studies on sub-Saharan Africa have focused on the ordinary least squares (OLS)-based hedonic model for the index and ignored spatial and proximity considerations.

Design/methodology/approach

Using the OLS and spatial econometric approach, the paper tests for the significance of the two effects – proximity and spatial dependence in the hedonic price model with year dummy variables from 2010 to 2019. The paper then compares the three indices in the following configurations: without the two effects, with proximity factors only, and with both effects, i.e. proximity and spatial dependence.

Findings

The inclusion of proximity factors and spatial dependence – spatial autocorrelation – seems to improve the hedonic price model but does not significantly improve the house price index. However, further research should be called for on account of the nascent nature of the market.

Originality/value

The paper brings new knowledge by demonstrating that it may not be necessary to take into account proximity factors and spatial dependence for the Dar es Salaam house price index.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 3 November 2023

Xiaojie Xu and Yun Zhang

The Chinese housing market has gone through rapid growth during the past decade, and house price forecasting has evolved to be a significant issue that draws enormous attention…

32

Abstract

Purpose

The Chinese housing market has gone through rapid growth during the past decade, and house price forecasting has evolved to be a significant issue that draws enormous attention from investors, policy makers and researchers. This study investigates neural networks for composite property price index forecasting from ten major Chinese cities for the period of July 2005–April 2021.

Design/methodology/approach

The goal is to build simple and accurate neural network models that contribute to pure technical forecasts of composite property prices. To facilitate the analysis, the authors consider different model settings across algorithms, delays, hidden neurons and data spitting ratios.

Findings

The authors arrive at a pretty simple neural network with six delays and three hidden neurons, which generates rather stable performance of average relative root mean square errors across the ten cities below 1% for the training, validation and testing phases.

Originality/value

Results here could be utilized on a standalone basis or combined with fundamental forecasts to help form perspectives of composite property price trends and conduct policy analysis.

Details

Property Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 29 December 2022

K.V. Sheelavathy and V. Udaya Rani

Internet of Things (IoT) is a network, which provides the connection with various physical objects such as smart machines, smart home appliance and so on. The physical objects are…

Abstract

Purpose

Internet of Things (IoT) is a network, which provides the connection with various physical objects such as smart machines, smart home appliance and so on. The physical objects are allocated with a unique internet address, namely, Internet Protocol, which is used to perform the data broadcasting with the external objects using the internet. The sudden increment in the number of attacks generated by intruders, causes security-related problems in IoT devices while performing the communication. The main purpose of this paper is to develop an effective attack detection to enhance the robustness against the attackers in IoT.

Design/methodology/approach

In this research, the lasso regression algorithm is proposed along with ensemble classifier for identifying the IoT attacks. The lasso algorithm is used for the process of feature selection that modeled fewer parameters for the sparse models. The type of regression is analyzed for showing higher levels when certain parts of model selection is needed for parameter elimination. The lasso regression obtains the subset for predictors to lower the prediction error with respect to the quantitative response variable. The lasso does not impose a constraint for modeling the parameters caused the coefficients with some variables shrink as zero. The selected features are classified by using an ensemble classifier, that is important for linear and nonlinear types of data in the dataset, and the models are combined for handling these data types.

Findings

The lasso regression with ensemble classifier–based attack classification comprises distributed denial-of-service and Mirai botnet attacks which achieved an improved accuracy of 99.981% than the conventional deep neural network (DNN) methods.

Originality/value

Here, an efficient lasso regression algorithm is developed for extracting the features to perform the network anomaly detection using ensemble classifier.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 25 April 2023

Nehal Elshaboury, Eslam Mohammed Abdelkader, Abobakr Al-Sakkaf and Ashutosh Bagchi

The energy efficiency of buildings has been emphasized along with the continual development in the building and construction sector that consumes a significant amount of energy…

95

Abstract

Purpose

The energy efficiency of buildings has been emphasized along with the continual development in the building and construction sector that consumes a significant amount of energy. To this end, the purpose of this research paper is to forecast energy consumption to improve energy resource planning and management.

Design/methodology/approach

This study proposes the application of the convolutional neural network (CNN) for estimating the electricity consumption in the Grey Nuns building in Canada. The performance of the proposed model is compared against that of long short-term memory (LSTM) and multilayer perceptron (MLP) neural networks. The models are trained and tested using monthly electricity consumption records (i.e. from May 2009 to December 2021) available from Concordia’s facility department. Statistical measures (e.g. determination coefficient [R2], root mean squared error [RMSE], mean absolute error [MAE] and mean absolute percentage error [MAPE]) are used to evaluate the outcomes of models.

Findings

The results reveal that the CNN model outperforms the other model predictions for 6 and 12 months ahead. It enhances the performance metrics reported by the LSTM and MLP models concerning the R2, RMSE, MAE and MAPE by more than 4%, 6%, 42% and 46%, respectively. Therefore, the proposed model uses the available data to predict the electricity consumption for 6 and 12 months ahead. In June and December 2022, the overall electricity consumption is estimated to be 195,312 kWh and 254,737 kWh, respectively.

Originality/value

This study discusses the development of an effective time-series model that can forecast future electricity consumption in a Canadian heritage building. Deep learning techniques are being used for the first time to anticipate the electricity consumption of the Grey Nuns building in Canada. Additionally, it evaluates the effectiveness of deep learning and machine learning methods for predicting electricity consumption using established performance indicators. Recognizing electricity consumption in buildings is beneficial for utility providers, facility managers and end users by improving energy and environmental efficiency.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 362