Search results

1 – 5 of 5
Article
Publication date: 23 March 2012

Boris Mitavskiy, Jonathan Rowe and Chris Cannings

The purpose of this paper is to establish a version of a theorem that originated from population genetics and has been later adopted in evolutionary computation theory that will…

Abstract

Purpose

The purpose of this paper is to establish a version of a theorem that originated from population genetics and has been later adopted in evolutionary computation theory that will lead to novel Monte‐Carlo sampling algorithms that provably increase the AI potential.

Design/methodology/approach

In the current paper the authors set up a mathematical framework, state and prove a version of a Geiringer‐like theorem that is very well‐suited for the development of Mote‐Carlo sampling algorithms to cope with randomness and incomplete information to make decisions.

Findings

This work establishes an important theoretical link between classical population genetics, evolutionary computation theory and model free reinforcement learning methodology. Not only may the theory explain the success of the currently existing Monte‐Carlo tree sampling methodology, but it also leads to the development of novel Monte‐Carlo sampling techniques guided by rigorous mathematical foundation.

Practical implications

The theoretical foundations established in the current work provide guidance for the design of powerful Monte‐Carlo sampling algorithms in model free reinforcement learning, to tackle numerous problems in computational intelligence.

Originality/value

Establishing a Geiringer‐like theorem with non‐homologous recombination was a long‐standing open problem in evolutionary computation theory. Apart from overcoming this challenge, in a mathematically elegant fashion and establishing a rather general and powerful version of the theorem, this work leads directly to the development of novel provably powerful algorithms for decision making in the environment involving randomness, hidden or incomplete information.

Article
Publication date: 5 June 2009

Boris Mitavskiy, Jonathan Rowe and Chris Cannings

A variety of phenomena such as world wide web, social or business networks, interactions are modelled by various kinds of networks (such as the scale free or preferential…

Abstract

Purpose

A variety of phenomena such as world wide web, social or business networks, interactions are modelled by various kinds of networks (such as the scale free or preferential attachment networks). However, due to the model‐specific requirements one may want to rewire the network to optimize the communication among the various nodes while not overloading the number of channels (i.e. preserving the number of edges). The purpose of this paper is to present a formal framework for this problem and to examine a family of local search strategies to cope with it.

Design/methodology/approach

This is mostly theoretical work. The authors use rigorous mathematical framework to set‐up the model and then we prove some interesting theorems about it which pertain to various local search algorithms that work by rerouting the network.

Findings

This paper proves that in cases when every pair of nodes is sampled with non‐zero probability then the algorithm is ergodic in the sense that it samples every possible network on the specified set of nodes and having a specified number of edges with nonzero probability. Incidentally, the ergodicity result led to the construction of a class of algorithms for sampling graphs with a specified number of edges over a specified set of nodes uniformly at random and opened some other challenging and important questions for future considerations.

Originality/value

The measure‐theoretic framework presented in the current paper is original and rather general. It allows one to obtain new points of view on the problem.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 25 November 2013

Alireza Fathi and Ahmad Mozaffari

The purpose of the current investigation is to design a robust and reliable computational framework to effectively identify the nonlinear behavior of shape memory alloy (SMA…

Abstract

Purpose

The purpose of the current investigation is to design a robust and reliable computational framework to effectively identify the nonlinear behavior of shape memory alloy (SMA) actuators, as one of the most applicable types of actuators in engineering and industry. The motivation of proposing such an intelligent paradigm emanates in the pursuit of fulfilling the necessity of devising a simple yet effective identification system capable of modeling the hysteric dynamical respond of SMA actuators.

Design/methodology/approach

To address the requirements of designing a pragmatic identification system, the authors integrate a set of fast yet reliable intelligent methodologies and provide a predictive tool capable of realizing the nonlinear hysteric behavior of SMA actuators in a computationally efficient fashion. First, the authors utilize the governing equations to design a gray box Hammerstein-Wiener identifier model. At the next step, they adopt a computationally efficient metaheuristic algorithm to elicit the optimum operating parameters of the gray box identifier.

Findings

Applying the proposed hybrid identifier framework allows the authors to find out its advantages in modeling the behavior of SMA actuator. Through different experiments, the authors conclude that the proposed identifier can be used for identification of highly nonlinear dynamic behavior of SMA actuators. Furthermore, by extending the conclusions and expounding the obtained results, one can easily infer that such a hybrid method may be conveniently applied to model other engineering phenomena that possess dynamic nonlinear reactions. Based on the exerted experiments and implementing the method, the authors come to the conclusion that integrating the power of metaheuristic exploration/exploitation with gray box identifier results a predictive paradigm that much more computationally efficient as compared with black box identifiers such as neural networks. Additionally, the derived gray box method has a higher degree of preference over the black box identifiers, as it allows a manipulated expert to extract the knowledge of the system at hand.

Originality/value

The originality of the research paper is twofold. From the practical (engineering) point of view, the authors built a prototype biased-spring SMA actuator and carried out several experiments to ascertain and validate the parameters of the model. From the computational point of view, the authors seek for designing a novel identifier that overcomes the main flaws associated with the performance of black-box identifiers that are the lack of a mean for extracting the governing knowledge of the system at hand, and high computational expense pertinent to the structure of black-box identifiers.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 6 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 September 1954

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Memoranda of the United States…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Memoranda of the United States National Advisory Committee for Aeronautics and publications of other similar Research Bodies as issued

Details

Aircraft Engineering and Aerospace Technology, vol. 26 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 September 1959

J.H. Argyris and S. Kelsey

The analysis of the wing/fuselage and fuselage/tail unit interaction forces is extended to cover the case when the attached component is more conveniently analysed by the Matrix…

Abstract

The analysis of the wing/fuselage and fuselage/tail unit interaction forces is extended to cover the case when the attached component is more conveniently analysed by the Matrix Displacement Method. The flexibility matrix of the complete aircraft, supported on the wing/fuselage attachment points, follows from the results derived in this and previous sections and takes into account the elastic interaction between the various components. The dynamical matrix of the complete free aircraft is set up and for completeness the theory and properties of the normal modes of vibration are given. A final sub‐section discusses some points of detail in the mass distribution and the definition of the forces on the aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 9
Type: Research Article
ISSN: 0002-2667

1 – 5 of 5