Search results

1 – 10 of 14
Article
Publication date: 7 December 2020

Joy Chowdhury, Angsuman Sarkar, Kamalakanta Mahapatra and Jitendra Kumar Das

The purpose of this paper is to present an improved model based on center potential instead of surface potential which is physically more relevant and accurate. Also, additional…

Abstract

Purpose

The purpose of this paper is to present an improved model based on center potential instead of surface potential which is physically more relevant and accurate. Also, additional analytic insights have been provided to make the model independent and robust so that it can be extended to a full range compact model.

Design/methodology/approach

The design methodology used is center potential based analytical modeling using Psuedo-2D Poisson equation, with ingeniously developed boundary conditions, which help achieve reasonably accurate results. Also, the depletion width calculation has been suitably remodeled, to account for proper physical insights and accuracy.

Findings

The proposed model has considerable accuracy and is able to correctly predict most of the physical phenomena occurring inside the broken gate Tunnel FET structure. Also, a good match has been observed between the modeled data and the simulation results. Ion/Iambipolar ratio of 10^(−8) has been achieved which is quintessential for low power SOCs.

Originality/value

The modeling approach used is different from the previously used techniques and uses indigenous boundary conditions. Also, the current model developed has been significantly altered, using very simple but intuitive technique instead of complex mathematical approach.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 26 October 2021

Cecilia Carlorosi, Chiara Giosuè, Van Anh Le Ngoc, Alessandra Mobili, Thi Nguyen Vu Trong, Phung Nguyen Huu Long, Fausto Pugnaloni and Francesca Tittarelli

This paper presents the outcomes of the international project “Protecting Landscape Heritage: a requalification project as an instrument for the re-birth of Quang Tri Old Citadel…

Abstract

Purpose

This paper presents the outcomes of the international project “Protecting Landscape Heritage: a requalification project as an instrument for the re-birth of Quang Tri Old Citadel in Vietnam”, achieved with scientific cooperation between the Università Politecnica delle Marche (Italy) and Hue University of Sciences (Vietnam) funded by the Italian Ministry of Foreign Affairs and International Cooperation and Ministry of Science and Technology of Vietnam. The research focuses on the Quang Tri Citadel, founded in 1809 and now in an advanced state of degradation.

Design/methodology/approach

For the purpose of rehabilitation, the wide multidisciplinary project first examined the historical context of the military model, the architectural aspects of the structure, the characterization of the existing materials, the degradation levels of different parts, and, finally, a proposal of the suggested interventions.

Findings

The original structure and geometry were extrapolated and studied. Building materials were produced with nearby raw materials. Firing temperatures of bricks ranged from 800 to 1,000 °C, hydraulic lime was supposed the binder of the mortar with a calcination temperature lower than 1,000 °C. Damage assessment was provided and after these analyses a requalification project was proposed so the cultural heritage can play a role for the future in the dialog between different cultures.

Originality/value

The requalification project achieved by an integrated analytical approach defines aspects in relation to the restoration of the structures, enabling compliance with the geometry, techniques, building materials used in the original construction and allowing its guardianship and management to align with the historical context of the architectural heritage.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 4
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 29 May 2023

Ting Li, Xianggang Chen, Junhai Wang, Lixiu Zhang, Xinran Li and Xiaoyi Wei

The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil…

Abstract

Purpose

The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil for friction and wear tests to simulate the wear conditions of hybrid bearings.

Design/methodology/approach

Through the characterization and analysis of the morphology of wear scars and the elemental composition of friction films, the tribological behavior and wear mechanism of sample materials as lubricant additives were investigated and the effects of shell thickness and sample concentration on the tribological properties of core–shell composite lubricant additives were discussed.

Findings

The findings demonstrate that each of the five sample materials can, to varying degrees, enhance the lubricating qualities of the base oil and that the core–shell nanocomposite sample lubricant additive has superior lubricating properties to those of ZnFe2O4 and MoS2 alone, among them ZnFe2O4@MoS2-2 core–shell composites with moderate shell thickness performed most ideally. In addition, the optimal concentration of the ZnFe2O4@MoS2 lubricant additive was 0.5 Wt.%, and a concentration that was too high led to particle deposition and affected the friction effect.

Originality/value

In this work, ZnFe2O4@MoS2 core–shell composites were synthesized for the first time using ZnFe2O4 as the carrier and the lubrication mechanism of core–shell composites and single materials were compared and studied, which illustrated the advantages of core–shell composite lubricant additives. At the same time, the influence of different shell thicknesses on the lubricant additives of core–shell composites was studied.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0367/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 February 2022

Yavar Safaei Mehrabani, Mojtaba Maleknejad, Danial Rostami and HamidReza Uoosefian

Full adder cells are building blocks of arithmetic circuits and affect the performance of the entire digital system. The purpose of this study is to provide a low-power and…

41

Abstract

Purpose

Full adder cells are building blocks of arithmetic circuits and affect the performance of the entire digital system. The purpose of this study is to provide a low-power and high-performance full adder cell.

Design/methodology/approach

Approximate computing is a novel paradigm that is used to design low-power and high-performance circuits. In this paper, a novel 1-bit approximate full adder cell is presented using the combination of complementary metal-oxide-semiconductor, transmission gate and pass transistor logic styles.

Findings

Simulation results confirm the superiority of the proposed design in terms of power consumption and power–delay product (PDP) criteria compared to state-of-the-art circuits. Also, the proposed full adder cell is applied in an 8-bit ripple carry adder to accomplish image processing applications including image blending, motion detection and edge detection. The results confirm that the proposed cell has premier compromise and outperforms its counterparts.

Originality/value

The proposed cell consists of only 11 transistors and decreases the switching activity remarkably. Therefore, it is a low-power and low-PDP cell.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 June 2022

James Geisbush and Samuel T. Ariaratnam

Reliability centered maintenance (RCM) is a process used to determine activities to be taken to ensure an asset continues to perform asset's function in asset's present operating…

1330

Abstract

Purpose

Reliability centered maintenance (RCM) is a process used to determine activities to be taken to ensure an asset continues to perform asset's function in asset's present operating context by identifying asset's function, failure modes that could preclude performing asset's intended function, prioritizing failure modes and determining effective preventative maintenance tasks that can be cost effectively and efficiently implemented to reduce the likelihood of a failure.

Design/methodology/approach

A comprehensive survey of literature was undertaken to examine the current industry state of practice. Various industries were examined to better understand applications of RCM within the various industry sectors and determine those industries that RCM has not historically been readily adopted. A case study example of RCM applied to radial gates for water control in open channel canals for water conveyance is presented to demonstrate a civil infrastructure application.

Findings

The results found that RCM has been used since RCM's inception in the airline industry during the 1960s to reduce the cost of maintaining aircrafts. Over the past 40 years, an assortment of industries has begun implementing cost effective preventative maintenance tasks identified during RCM analysis. However, there is a noticeable lack of civil assets being analyzed by RCM, such as water conveyance systems and other civil infrastructure systems vital to the health and well-being of today's societies.

Originality/value

The comprehensive literature review of the current state of practice will provide a better understanding of the various applications of RCM to facilitate RCM's application to other industries, thereby reducing failure due to early identification of maintenance tasks. An example RCM demonstrates the application to a radial gate, used in water conveyance for the drinking water and irrigation sectors, which have not historically used RCM for developing maintenance strategies.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 9 August 2021

Ramesh Kumar Vobulapuram, Javid Basha Shaik, Venkatramana P., Durga Prasad Mekala and Ujwala Lingayath

The purpose of this paper is to design novel tunnel field effect transistor (TFET) using graphene nanoribbons (GNRs).

Abstract

Purpose

The purpose of this paper is to design novel tunnel field effect transistor (TFET) using graphene nanoribbons (GNRs).

Design/methodology/approach

To design the proposed TFET, the bilayer GNRs (BLGNRs) have been used as the channel material. The BLGNR-TFET is designed in QuantumATK, depending on 2-D Poisson’s equation and non-equilibrium Green’s function (NEGF) formalism.

Findings

The performance of the proposed BLGNR-TFET is investigated in terms of current and voltage (I-V) characteristics and transconductance. Moreover, the proposed device performance is compared with the monolayer GNR-TFET (MLGNR-TFET). From the simulation results, it is investigated that the BLGNR-TFET shows high current and gain over the MLGNR-TFET.

Originality/value

This paper presents a new technique to design GNR-based TFET for future low power very large-scale integration (VLSI) devices.

Details

Circuit World, vol. 49 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 20 December 2023

Kailash Choudhary, Narpat Ram Sangwa and Kuldip Singh Sangwan

This study aims to quantify and compare the environmental impacts of Marble-stone and Kota-stone flooring options widely used for buildings in India. The study discusses the…

Abstract

Purpose

This study aims to quantify and compare the environmental impacts of Marble-stone and Kota-stone flooring options widely used for buildings in India. The study discusses the possibility of carbon sequestration through Bamboo cultivation in India.

Design/methodology/approach

The study has followed a standard life cycle assessment (LCA) framework based on ISO 14040 guidelines. Three distinct phases have been compared on midpoint and endpoint assessment categories – raw material, polishing and disposal. Primary data has been collected from the construction site in India, and secondary data has been collected from the Ecoinvent 3.0 database. Previous studies have been referred to discuss and calculate the area of bamboo cultivation required to sequestrate the generated carbon from the flooring.

Findings

The study has found that endpoint category damage to resources, and midpoint categories of climate change, metal depletion and agricultural land use are highly impacted in building floorings. The study has also found that the Marble-stone floor generates higher environmental impacts than the Kota-stone floor in most of the midpoint and endpoint impact categories. This difference is significant in the raw material phase due to the different compositions of stones. The study also found that Bamboo has excellent potential to act as a carbon sink and mitigate the generated carbon.

Research limitations/implications

This study excludes human labour, cutting and distribution of floor tiles made of Marble-stone and Kota-stone. The researcher can use the study to evaluate, compare and benchmark the various building flooring options from the environmental perspective. The study aids to the body of knowledge available on the various building flooring options by presenting the LCA or the environmental impacts generated by two flooring options. It is expected that the architects and builders can use these results to develop carbon-neutral buildings. This study provides a methodology for governments, constructors, builders and individuals to evaluate, compare and benchmark the various construction materials from the environmental perspective by computing the environmental impacts throughout the life cycle of the materials.

Originality/value

This study compares two widely used building flooring options using the LCA methodology and evaluates the potential of bamboo cultivation near the buildings for carbon sinks. The study is unique because it shows the environmental impacts of two flooring options and the carbon sequestration method to mitigate/absorb the generated environmental impacts in or around the building itself through bamboo cultivation. This study may set the foundation for carbon-neutral buildings.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 July 2023

Nehal Elshaboury, Eslam Mohammed Abdelkader and Abobakr Al-Sakkaf

Modern human society has continuous advancements that have a negative impact on the quality of the air. Daily transportation, industrial and residential operations churn up…

Abstract

Purpose

Modern human society has continuous advancements that have a negative impact on the quality of the air. Daily transportation, industrial and residential operations churn up dangerous contaminants in our surroundings. Addressing air pollution issues is critical for human health and ecosystems, particularly in developing countries such as Egypt. Excessive levels of pollutants have been linked to a variety of circulatory, respiratory and nervous illnesses. To this end, the purpose of this research paper is to forecast air pollution concentrations in Egypt based on time series analysis.

Design/methodology/approach

Deep learning models are leveraged to analyze air quality time series in the 6th of October City, Egypt. In this regard, convolutional neural network (CNN), long short-term memory network and multilayer perceptron neural network models are used to forecast the overall concentrations of sulfur dioxide (SO2) and particulate matter 10 µm in diameter (PM10). The models are trained and validated by using monthly data available from the Egyptian Environmental Affairs Agency between December 2014 and July 2020. The performance measures such as determination coefficient, root mean square error and mean absolute error are used to evaluate the outcomes of models.

Findings

The CNN model exhibits the best performance in terms of forecasting pollutant concentrations 3, 6, 9 and 12 months ahead. Finally, using data from December 2014 to July 2021, the CNN model is used to anticipate the pollutant concentrations 12 months ahead. In July 2022, the overall concentrations of SO2 and PM10 are expected to reach 10 and 127 µg/m3, respectively. The developed model could aid decision-makers, practitioners and local authorities in planning and implementing various interventions to mitigate their negative influences on the population and environment.

Originality/value

This research introduces the development of an efficient time-series model that can project the future concentrations of particulate and gaseous air pollutants in Egypt. This research study offers the first time application of deep learning models to forecast the air quality in Egypt. This research study examines the performance of machine learning approaches and deep learning techniques to forecast sulfur dioxide and particular matter concentrations using standard performance metrics.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 14 July 2021

Koosha Wafaei Baneh, Bira Wafaei Baneh, Ashraf Osman, Omid Mostafapour and Zidan Rasheed Bradosty

Due to the weaknesses of the traditional methods and advances in science, using currently new technologies such as building information modeling (BIM) for the restoration and…

Abstract

Purpose

Due to the weaknesses of the traditional methods and advances in science, using currently new technologies such as building information modeling (BIM) for the restoration and revival of historical monuments is considered a novel solution. This study addresses how computer science in BIM can contribute significantly to the restoration and improvement of the cultural heritage.

Design/methodology/approach

This study addresses how computer science in BIM can contribute significantly to the restoration and improvement of the cultural heritage.

Findings

Also, it assesses through this application, the capabilities of current software's in developing with the use of photogrammetry an accurate geometrical models for the minaret with its elements are linked to databases carrying information related to the minaret texture, historical identity and decoration. Finally, it shows the importance of this model to support experts in case of future restoration and conservation to the minaret.

Originality/value

The research describes the process of regenerating and documenting the motifs of the historical Choli minaret in Erbil. It explains the steps followed for full application of the historical buildings information modeling (HBIM) to this minaret.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 15 January 2024

Mohammad A Gharaibeh, Markus Feisst and Jürgen Wilde

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Abstract

Purpose

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Design/methodology/approach

The AgSn TLP test samples are manufactured using pre-defined optimized TLP bonding process parameters. Consequently, tensile and creep tests are conducted at various loading temperatures to generate stress–strain and creep data to accurately determine the elastic properties and two sets of Anand model creep coefficients. The resultant tensile- and creep-based constitutive models are subsequently used in extensive finite element simulations to precisely survey the mechanical response of the AgSn TLP bonds in power electronics due to different thermal loads.

Findings

The response of both models is thoroughly addressed in terms of stress–strain relationships, inelastic strain energy densities and equivalent plastic strains. The simulation results revealed that the testing conditions and parameters can significantly influence the values of the fitted Anand coefficients and consequently affect the resultant FEA-computed mechanical response of the TLP bonds. Therefore, this paper suggests that extreme care has to be taken when planning experiments for the estimation of creep parameters of the AgSn TLP joints.

Originality/value

In literature, there is no constitutive modeling data on the AgSn TLP bonds.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 14