Search results

21 – 30 of over 4000
Article
Publication date: 1 June 2001

Robert Bogue

Reviews the state of the UK gas sensor industry. Considers the nature and scale of university research and the extent to which this has been exploited by UK gas sensor companies…

1222

Abstract

Reviews the state of the UK gas sensor industry. Considers the nature and scale of university research and the extent to which this has been exploited by UK gas sensor companies. Discusses the background to many leading UK companies, together with details of a number of recent acquisitions and recently established companies and their technologies. Concludes with a summary of new and emerging market opportunities.

Details

Sensor Review, vol. 21 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 April 1996

Z. Keresztes‐Nagy

The majority of methods for the optical monitoring of gases can be divided into two main groups. In the first, the intrinsicoptical properties of the gas are exploited to sense…

169

Abstract

The majority of methods for the optical monitoring of gases can be divided into two main groups. In the first, the intrinsic optical properties of the gas are exploited to sense it. In the second group, an indicator is used to transduce the gas concentration into a measurable optical parameter. Most gas sensors are usually sensitive to only one parameter of the monitored gas. This paper contains a description of a gas multisensor that is suitable for measuring gas concentration and pressure at the same time. It needs a special sensor construction that can measure the mentioned properties in parallel. The essence of this sensor is the double rle of the diaphragm. This means that the diaphragm itself is for sensing the pressure and suitable layer with an immobilised reagent is applied on top of the diaphragm for sensing the concentration of the gas. The sensing method is a fibre guided incident light beam to the diaphragm's surface. The incident beam passes through the concentration‐sensitive layer twice as the diaphragm's surface reflects it. The properties of the reflected beam contain the required information — pressure and concentration — about the measured gas. At the output of the system the reflected light intensity is proportional to pressure and the spectrum is promotional to concentration of gas. The paper describes the design and results in detail.

Details

Microelectronics International, vol. 13 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 15 May 2023

Gözde Konuk Ege, Özge Akay and Hüseyin Yüce

This study aims to investigate the ammonia-sensing performance of polyaniline/polyethylene oxide (PANI/PEO) and polyaniline/polyethylene oxide/zinc oxide (PANI/PEO-ZnO) composite…

Abstract

Purpose

This study aims to investigate the ammonia-sensing performance of polyaniline/polyethylene oxide (PANI/PEO) and polyaniline/polyethylene oxide/zinc oxide (PANI/PEO-ZnO) composite nanofibers at room temperature.

Design/methodology/approach

Gas sensor structures were fabricated using microfabrication techniques. First, onto the SiO2 wafer, gold electrodes were fabricated via thermal evaporation. PANI/PEO nanofibers were produced by the electrospinning method, and the ZnO layer was deposited by using radio frequency (RF) magnetron sputtering on the electrospun nanofibers as a sensing layer. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction were performed to characterize the analysis of nanofibers. After all, gas sensing analysis of PANI/PEO and PANI/PEO/ZnO nanofibers was conducted using an experimental setup at room temperature conditions. Furthermore, the impact of humidity (17%–90% RH) on the sensor resistance was actively investigated.

Findings

FTIR analysis confirms the presence of functional groups of PANI, PEO and ZnO in nanofiber structure. SEM micrographs demonstrate beads-free, thinner and smooth nanofibers with ZnO contribution to electrospun PANI/PEO nanofibers. Moreover, according to the gas sensing results, the PANI/PEO nanofibers exhibit 115 s and 457 s response time and recovery time, respectively. However, the PANI/PEO/ZnO nanofibers exhibit 245 s and 153 s response time and recovery time, respectively. PANI/PEO/MOx composite nanofibers ensure stability to the NH3 gas owing to the high surface/volume ratio and decrease in the humidity dependence of gas sensors, making gas sensors more stable to the environment.

Originality/value

In this study, ZnO was deposited via RF magnetron sputtering techniques on PANI/PEO nanofibers as a different approach instead of in situ polymerization to investigate and enhance the sensor response and recovery time of the PANI/PEO/ZnO and PANI/PEO composite nanofibers to ammonia. These results indicated that ZnO can enhance the sensing properties of conductive polymer-based resistive sensors.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 11 October 2022

Marina Stramarkou, Achilleas Bardakas, Magdalini Krokida and Christos Tsamis

Carbon dioxide (CO2) has attracted special scientific interest over the last years mainly because of its relation to climate change and indoor air quality. Except for this, CO2

267

Abstract

Purpose

Carbon dioxide (CO2) has attracted special scientific interest over the last years mainly because of its relation to climate change and indoor air quality. Except for this, CO2 can be used as an indicator of food freshness, patients’ clinical state and fire detection. Therefore, the accurate monitoring and controlling of CO2 levels are imperative. The development of highly sensitive, selective and reliable sensors that can efficiently distinguish CO2 in various conditions of temperature, humidity and other gases’ interference is the subject of intensive research with chemi-resistive zinc oxide (ZnO)-based sensors holding a privileged position. Several ZnO nanostructures have been used in sensing applications because of their versatile features. However, the deficient selectivity and long-term stability remain major concerns, especially when operating at room temperature. This study aims to encompass an extensive study of CO2 chemi-resistive sensors based on ZnO, introducing the most significant advances of recent years and the best strategies for enhancing ZnO sensing properties.

Design/methodology/approach

An overview of the different ZnO nanostructures used for CO2 sensing and their synthesis methods is presented, focusing on the parameters that highly affect the sensing mechanism and, thus, the performance of CO2 sensors.

Findings

The selectivity and sensitivity of ZnO sensors can be enhanced by adjusting various parameters during their synthesis and by doping or treating ZnO with suitable materials.

Originality/value

This paper summarises the advances in the rapidly evolving field of CO2 sensing by ZnO sensors and provides research directions for optimised sensors in the future.

Details

Sensor Review, vol. 42 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 December 2017

Mohammadali Eslamian, Alireza Salehi and Zohreh Sadat Miripour

Indium tin oxide (ITO) thin film as a gas sensor has a good stability and performance. The purpose of this paper is to compare the effect of depositing different metal layers in…

183

Abstract

Purpose

Indium tin oxide (ITO) thin film as a gas sensor has a good stability and performance. The purpose of this paper is to compare the effect of depositing different metal layers in various structures on the gas sensing properties of ITO toward ethanol and carbon dioxide.

Design/methodology/approach

In this work, the authors have investigated the effect of depositing an ITO layer by Electron Beam Evaporation technique under, on top and in the middle of the metal layers. Surface morphology and the response of the fabricated sensors were compared and the changes in the response of the sensors to ethanol and carbon dioxide gases were studied at various gas concentrations and operating temperatures. The sensing mechanism and result of the other studies were also discussed.

Findings

Comparing various sensor structures reported in this study showed that the ITO nanorods which grow over distinct Ag nano-islands in the ITO/Ag structure has the highest response of 420 per cent to ethanol which is 6 times more than the single-layer ITO sensor. Further, gold nanoparticles on ITO nanorods in Au/ITO/Ag structure produce a very complex structure that exhibits the best response of 150 per cent to carbon dioxide which is 6.5 times more than the single-layer ITO sensor. The response and the recovery times were improved also.

Originality/value

Different ITO-metal gas sensor structures were studied and compared toward ethanol and carbon dioxide. Response enhancement and various surface changes through a series of experiments and analysis were discussed and compared to the literature.

Details

Sensor Review, vol. 38 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 January 2016

Gu Gong and Hua Zhu

The purpose of this study satisfied the need for rapid, sensitive and highly portable identification of an explosion gas. In our study, a battery-operated, low-cost and portable…

Abstract

Purpose

The purpose of this study satisfied the need for rapid, sensitive and highly portable identification of an explosion gas. In our study, a battery-operated, low-cost and portable gas detection system consisting of a cataluminescence-based sensor array was developed for the detection and identification of explosion gas. This device shows how the discriminatory capacity of sensor arrays utilizing pattern recognition operate in environments.

Design/methodology/approach

A total of 25 sensor units, including common metal oxides and decorated materials, have been carefully selected as sensing elements of 5 × 5 sensor array. Dynamic and static analysis methods were utilized to characterize the performance of the explosion gas detection system to five kinds of explosion gases. The device collects images of chemical sensors before and after exposing to the target gas and then processes those images to extract the unique characteristic for each gas. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to analyze the image patterns.

Findings

Our study demonstrated that the portable gas detection device shows promising perspective for the recognition and discrimination of explosion gas. It can be used for the olfactory system of robot made by integrating the electronic nose and computer together.

Originality/value

The device collects images of chemical sensors before and after exposing to the target gas and then processes those images to extract the unique characteristic for each gas. HCA and (PCA were used to analyze the image patterns. Our study demonstrated that the portable gas detection device shows promising perspective for the recognition and discrimination of explosion gas. It can be used for olfactory system of robot made by integrating the electronic nose and computer together.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 October 2021

Mokhtar Aarabi, Alireza Salehi and Alireza Kashaninia

The purpose of this study is use to density functional theory (DFT) to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are…

Abstract

Purpose

The purpose of this study is use to density functional theory (DFT) to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are performed using the SIESTA code. In addition, the non-equilibrium Green’s function method is used within the TranSIESTA code to determine the quantum transport properties of molecular nanodevices.

Design/methodology/approach

Density functional theory (DFT) is used to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are performed using the SIESTA code. In addition, the non-equilibrium Green’s function method is used within the TranSIESTA code to determine the quantum transport properties of molecular nanodevices.

Findings

Simulation results show very good sensitivity of Pd-doped PEDOT:PSS to ammonia, carbon dioxide and methane, so this structure cannot be used for simultaneous exposure to these gases. Silver-doped PEDOT:PSS structure provides a favorable sensitivity to ammonia in addition to exhibiting a better selectivity. If the experiment is repeated, the sensitivity is increased for a larger concentration of the applied gas. However, the sensitivity will decrease at a higher ratio than smaller concentrations of gas.

Originality/value

The advantages of the proposed sensor are its low-cost implementation and simple fabrication process compared to other sensors. Moreover, the proposed sensor exhibits appropriate sensitivity and repeatability at room temperature.

Details

Sensor Review, vol. 41 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 November 2021

Vishakha Pareek, Santanu Chaudhury and Sanjay Singh

The electronic nose is an array of chemical or gas sensors and associated with a pattern-recognition framework competent in identifying and classifying odorant or non-odorant and…

Abstract

Purpose

The electronic nose is an array of chemical or gas sensors and associated with a pattern-recognition framework competent in identifying and classifying odorant or non-odorant and simple or complex gases. Despite more than 30 years of research, the robust e-nose device is still limited. Most of the challenges towards reliable e-nose devices are associated with the non-stationary environment and non-stationary sensor behaviour. Data distribution of sensor array response evolves with time, referred to as non-stationarity. The purpose of this paper is to provide a comprehensive introduction to challenges related to non-stationarity in e-nose design and to review the existing literature from an application, system and algorithm perspective to provide an integrated and practical view.

Design/methodology/approach

The authors discuss the non-stationary data in general and the challenges related to the non-stationarity environment in e-nose design or non-stationary sensor behaviour. The challenges are categorised and discussed with the perspective of learning with data obtained from the sensor systems. Later, the e-nose technology is reviewed with the system, application and algorithmic point of view to discuss the current status.

Findings

The discussed challenges in e-nose design will be beneficial for researchers, as well as practitioners as it presents a comprehensive view on multiple aspects of non-stationary learning, system, algorithms and applications for e-nose. The paper presents a review of the pattern-recognition techniques, public data sets that are commonly referred to as olfactory research. Generic techniques for learning in the non-stationary environment are also presented. The authors discuss the future direction of research and major open problems related to handling non-stationarity in e-nose design.

Originality/value

The authors first time review the existing literature related to learning with e-nose in a non-stationary environment and existing generic pattern-recognition algorithms for learning in the non-stationary environment to bridge the gap between these two. The authors also present details of publicly available sensor array data sets, which will benefit the upcoming researchers in this field. The authors further emphasise several open problems and future directions, which should be considered to provide efficient solutions that can handle non-stationarity to make e-nose the next everyday device.

Article
Publication date: 20 March 2017

Sajad Pirsa and Fardin Mohammad Nejad

The purpose of this paper is to construct an array of sensors using polypyrrole–zinc oxide (PPy–ZnO) and PPy–vanadium (V; chemical formula: V2O5) fibers. To test responses of…

Abstract

Purpose

The purpose of this paper is to construct an array of sensors using polypyrrole–zinc oxide (PPy–ZnO) and PPy–vanadium (V; chemical formula: V2O5) fibers. To test responses of sensors, a central composite design (CCD) has been used. The results of the CCD technique revealed that the developed sensors are orthogonally sensitive to diacetyl, lactic acid and acetic acid. In total, 20 different mixtures of diacetyl, lactic acid and acetic acid were prepared, and the responses of the array sensors were recorded for each mixture.

Design/methodology/approach

A response surface regression analysis has been used for correlating the responses of the sensors to diacetyl, lactic acid and acetic acid concentrations during the gas phase in food samples. The developed multivariate model was used for simultaneous determination of diacetyl, lactic acid and acetic acid concentrations. Some food samples with unknown concentrations of diacetyl, lactic acid and acetic acid were provided, and the responses of array sensors to each were recorded.

Findings

The responses of each sensor were considered as target response in a response optimizer, and by an overall composite desirability, the concentration of each analyte was predicted. The present work suggests the applicability of the response surface regression analysis as a modeling technique for correlating the responses of sensor arrays to concentration profiles of diacetyl, lactic acid and acetic acid in food samples.

Originality/value

The PPy–ZnO and PPy–V2O5 nanocomposite fibers were synthesized by chemical polymerization. The provided conducting fibers, PPy–ZnO and PPy–V2O5, were used in an array gas sensor system for the analysis of volatile compounds (diacetyl, lactic acid and acetic acid) added to yogurt and milk samples.

Details

Sensor Review, vol. 37 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1994

J Gilby

Looks at modern electrochemical gas sensors: they way they workand the range of gases they can detect. The largest application area is inportable gas detection equipment where the…

276

Abstract

Looks at modern electrochemical gas sensors: they way they work and the range of gases they can detect. The largest application area is in portable gas detection equipment where the emphasis is on small size and low power demands. These sensors are also used for emissions monitoring, specifically from combustion sources. Concludes that portable multigas detectors will continue to get smaller with a consequent reduction in size of sensors and that a wider range of gas sensors will be available with advances in electrochemistry.

Details

Sensor Review, vol. 14 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

21 – 30 of over 4000