Search results

1 – 10 of 801
Article
Publication date: 2 November 2015

Lei Pang, Lei Liu, Yong Kang and Pengfei Lv

Gas explosion is one of the most major types of accident in mining projects, and the flame front with high temperature is major hazardous factor induced by this kind of accident

Abstract

Purpose

Gas explosion is one of the most major types of accident in mining projects, and the flame front with high temperature is major hazardous factor induced by this kind of accident. Support engineering provides an available way to solve problems related to ground movements, but very likely has a great influence on the gas explosion accident process, especially the flame propagation, and then aggravates mining risk. However, until now it has not been received much attention from scientific works. The paper aims to discuss these issues.

Design/methodology/approach

A commercial CFD software package AutoReaGas suitable for gas explosion is used to carry out the numerical investigation of gas explosion process in a straight coal tunnel with typical support engineering, especially the unsteady explosion field and the flame propagation process in it.

Findings

Support engineering composed by multiple bars take positive influence on flame acceleration: the flame speed is much faster than that under no support bars, and the smaller support spacing induces greater flame speed near the ignition. The support bars also exert negative influence on flame acceleration: the larger support spacing induces greater flame speed in most region of the tunnel. Furthermore, a traditional viewpoint that denser obstacles induce greater explosion effects is one-sided according to this study.

Originality/value

At present, no one concerns the aggravating influence of support engineering on accident risk in practical mining projects because of small geometric dimension. This work examines the effect of steel support system on evolution processes of gas explosion accidents, especially the flame propagation. The conclusions provide quantitative scientific basis for this kind of the accidents in risk evolution and accident investigation of mining engineering.

Details

Engineering Computations, vol. 32 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 April 2014

Qi Zhang, Lei Pang and Dachao Lin

The high-velocity wind caused by a methane-air explosion is one of the important hazardous effects in explosion events of coal mines, and, however, until now it has not been…

Abstract

Purpose

The high-velocity wind caused by a methane-air explosion is one of the important hazardous effects in explosion events of coal mines, and, however, until now it has not been received much attention from scientific works. The paper aims to discuss this issue.

Design/methodology/approach

In consideration of the difficulties in observing particle velocities of high-velocity flows, this work presented a study to reveal the regularity during a methane-air explosion happening in the tunnel of coal mine through the numerical analysis approach.

Findings

The strong wind caused by a methane-air explosion is a significant hazard and can cause damage in the accidents of methane-air explosion in underground coal mines, especially at structural opening, according to this work. Obtained results show that maximum particle velocity of the high-velocity wind occurs in the outside region of the premixed area, with a peak value of 400∼500 m/s, and the peak velocity of the high-velocity wind decreases exponentially with distance beyond the premixed area.

Originality/value

The objective of this work was to examine the effect of wind caused by a methane-air explosion in a tunnel. Other information, such as shock wave and flame and temperature distribution, has been reported in the previous literatures. However, in the accidents of methane-air explosion in underground coal mines, some phenomena (structural opening is destroyed badly) can not be understood by using shock wave and flame and temperature distribution caused by the explosion. The strong wind caused by a methane-air explosion is another significant hazard and can cause damage in the methane-air explosion accidents in underground coal mines, especially at structural opening, according to this work.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 1 October 2006

176

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 15 no. 5
Type: Research Article
ISSN: 0965-3562

Article
Publication date: 1 August 2016

Bingyou Jiang, Zegong Liu, Shulei Shi, Feng Cai, Jian Liu, Mingyun Tang and Baiquan Lin

The purpose of this paper is to understand a flameproof distance necessary to avoid the flame harms to underground personnel which may have great significance to the safety of…

Abstract

Purpose

The purpose of this paper is to understand a flameproof distance necessary to avoid the flame harms to underground personnel which may have great significance to the safety of underground personnel and the disaster relief of gas explosions in coal mines.

Design/methodology/approach

Through a roadway with a length of 100 m and a cross-section area of 80 mm×80 mm, the flame propagation of premixed methane-air deflagrations were simulated by using AutoReaGas software for various fuel concentrations (7, 8, 9.5, 11, and 14 percent), fuel volumes (0.0128, 0.0384, 0.064, and 0.0896 m3), initial temperatures (248, 268, 288, 308, and 328 K), and initial pressures (20, 60, 101.3, 150, and 200 kPa).

Findings

The maximum combustion rate for each point follows a changing trend of increasing and decreasing with the distance increasing from the ignition source, and it increases with the fuel volume increasing or the initial pressure increasing, and decreases with the initial temperature increasing. However, increasing the initial temperature increases the flame arrival time for each point. The flameproof distance follows a changing trend of increasing and decreasing with the fuel concentration increasing, and it linearly increases with the fuel volume increasing or the initial temperature increasing. However, the flameproof distances are all 17 m for various initial pressures.

Originality/value

Increasing initial temperature increases flame arrival time for each test point. Flameproof distance increases and then decreases with fuel concentration increasing. Increasing fuel volume or initial temperature linearly increases flameproof distance. Initial pressure has little impact on the flameproof distance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2024

Xiaobo Shi, Yan Liu, Kunkun Ma, Zixin Gu, Yaning Qiao, Guodong Ni, Chibuzor Ojum, Alex Opoku and Yong Liu

The purpose is to identify and evaluate the safety risk factors in the coal mine construction process.

Abstract

Purpose

The purpose is to identify and evaluate the safety risk factors in the coal mine construction process.

Design/methodology/approach

The text mining technique was applied in the stage of safety risk factor identification. The association rules method was used to obtain associations with safety risk factors. Decision-Making Trial and Evaluation Laboratory (DEMATEL) and Interpretative Structural Modeling (ISM) were utilized to evaluate safety risk factors.

Findings

The results show that 18 safety risk factors are divided into 6 levels. There are 12 risk transmission paths in total. Meanwhile, unsafe behavior and equipment malfunction failure are the direct causes of accidents, and inadequate management system is the basic factor that determines the safety risk status.

Research limitations/implications

Due to the limitation of the computational matrix workload, this article only categorizes numerous lexical items into 18 factors. Then, the workshop relied on a limited number of experts; thus, the findings may be potentially biased. Next, the accident report lacks a universal standard for compilation, and the use of text mining technique may be further optimized. Finally, since the data are all from China, subsequent cross-country studies should be considered.

Social implications

The results can help China coal mine project managers to have a clear understanding of safety risks, efficiently carry out risk hazard identification work and take timely measures to cut off the path of transmission with risks identified in this study. This helps reduce the economic losses of coal mining enterprises, thus improving the safety standards of the entire coal mining industry and the national standards for coal mine safety policy formulation.

Originality/value

Coal mine construction projects are characterized by complexity and difficulties in construction. Current research on the identification and assessment of safety risk factors in coal mine construction is insufficient. This study combines objective and systematic research approaches. The findings contribute to the safety risk management of China coal mine construction projects by providing a basis for the development of safety measures.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 March 2017

Longfei Hou, Dan Wang, Bingxuan Du, Xinmin Qian and Mengqi Yuan

The purpose of this paper is to present a new technique for monitoring gas leakage in underground pipelines to prevent dangerous explosions.

Abstract

Purpose

The purpose of this paper is to present a new technique for monitoring gas leakage in underground pipelines to prevent dangerous explosions.

Design/methodology/approach

A novel system for monitoring methane concentration in underground spaces was developed by integrating the multi-channeled air sampling method with an infrared gas sensor. A pipe installation methodology (without excavation) was established and verified accordingly.

Findings

The proposed approach was proven successful in reducing the quantity of sensors needed for real-time monitoring of underground pipeline leakage by about 80 per cent. Furthermore, this system lowers total operational cost by as much as 60 per cent.

Originality/value

The results presented here represent a possible solution to reducing the public safety risks associated with explosions and fires caused by pipeline leakage in underground spaces. Its total cost is low and its monitoring efficiency is high.

Details

Sensor Review, vol. 37 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 March 2024

Yuanwen Han, Jiang Shen, Xuwei Zhu, Bang An and Xueying Bao

This study aims to develop an interface management risk interaction modeling and analysis methodology applicable to complex systems in high-speed rail construction projects…

Abstract

Purpose

This study aims to develop an interface management risk interaction modeling and analysis methodology applicable to complex systems in high-speed rail construction projects, reveal the interaction mechanism of interface management risk and provide theoretical support for project managers to develop appropriate interface management risk response strategies.

Design/methodology/approach

This paper introduces the association rule mining technique to improve the complex network modeling method. Taking China as an example, based on the stakeholder perspective, the risk factors and significant accident types of interface management of high-speed rail construction projects are systematically identified, and a database is established. Then, the Apriori algorithm is used to mine and analyze the strong association rules among the factors in the database, construct the complex network, and analyze its topological characteristics to reveal the interaction mechanism of the interface management risk of high-speed rail construction projects.

Findings

The results show that the network is both scale-free and small-world, implying that construction accidents are not random events but rather the result of strong interactions between numerous interface management risks. Contractors, technical interfaces, mechanical equipment, and environmental factors are the primary direct causal factors of accidents, while owners and designers are essential indirect causal factors. The global importance of stakeholders such as owners, designers, and supervisors rises significantly after considering the indirect correlations between factors. This theoretically explains the need to consider the interactions between interface management risks.

Originality/value

The interaction mechanism between interface management risks is unclear, which is an essential factor influencing the decision of risk response measures. This study proposes a new methodology for analyzing interface management risk response strategies that incorporate quantitative analysis methods and considers the interaction of interface management risks.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 15 July 2021

Vishal M. and Satyanarayanan K.S.

This paper delineates a literature review on fire-induced progressive collapse on structures and the effect of high temperature on structures and elements. After the occurrences…

Abstract

Purpose

This paper delineates a literature review on fire-induced progressive collapse on structures and the effect of high temperature on structures and elements. After the occurrences of fire in the World Trade Center in the USA, the researchers started concentrating on the progressive collapse that happens due to high temperature. Currently, most of the researchers are working on fire-induced progressive collapse on structures using high-temperature behavior on materials which are used for construction. The researchers have been doing an intensive study to find a better strategy to prevent the building from structural fire damage or collapse with available codes and guidelines throughout the world. This paper aims to provide a better understanding and analytical solutions on the basis of the recent works done by researchers in fire-induced progressive collapse and methods adopted to find the collapse mechanism.

Design/methodology/approach

This paper is written by studying different literature papers of 109 related to progressive collapse on structures and fire-induced progressive collapse.

Findings

The behavior of structures due to high temperature and collapse conditions due to fire in different scenarios is identified.

Originality/value

This paper fulfills an identified need to study how the structure can withstand high-temperature conditions in our day-to-day lives.

Details

Journal of Structural Fire Engineering, vol. 12 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 April 2015

Mari Carmen Gil Ortega and Liz Falconer

Distance learning (DL) programmes are becoming increasingly popular in higher education. Overcoming feelings of isolation that may occur due to the reduced support available, the…

Abstract

Purpose

Distance learning (DL) programmes are becoming increasingly popular in higher education. Overcoming feelings of isolation that may occur due to the reduced support available, the few possibilities of social interaction and the non-existent campus atmosphere in online courses, have become one of the major challenges of designers and instructors of DL programmes. The paper aims to discuss these issues.

Design/methodology/approach

This paper provides an example of how the authors can create and use virtual world (VW) learning spaces that not only match the face-to-face learning experience, but also enhance it. Innovation@UWE Island in Second Life, home of the MA education in virtual worlds, is an example of pedagogical innovation that capitalises on what VWs have to offer to social aspects of teaching and learning. In this programme the authors use a three-dimensional virtual space to provide postgraduate students – physically located in diverse geographical areas of the world – with a sense of community and connectedness that matches the sense of belonging that often accompanies the on-campus learning experience.

Findings

The paper provides examples of students engaging in an environment where traditional conceptions of both “teaching” and “learning” do not apply, where the four-walled classroom is not the only setting where learning happens, where everyone in the group can potentially be an instructor or a peer, an expert or a novice, and learn from each other in a meaningful way.

Originality/value

This paper introduces the rationale behind the choice of architecture of the learning environment as well as the instructional design of the programme to enhance co-presence and place presence, to build a true community of practice and to foster collaboration for reflective learning.

Details

Journal of Applied Research in Higher Education, vol. 7 no. 1
Type: Research Article
ISSN: 2050-7003

Keywords

Content available
Article
Publication date: 1 August 2003

167

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 12 no. 3
Type: Research Article
ISSN: 0965-3562

1 – 10 of 801