Search results

21 – 30 of 516
Article
Publication date: 23 August 2021

Mohamad Bekhit, Essam Fahim and Asmaa Sobhy

The purpose of this paper is to fall light on the possibility of using the biopolymer chitosan in gamma dose monitoring.

141

Abstract

Purpose

The purpose of this paper is to fall light on the possibility of using the biopolymer chitosan in gamma dose monitoring.

Design/methodology/approach

The chitosan films were irradiated to gamma rays in the range starting from 10 to 120 kGy at a dose rate of 1.4 kGy/h using 60Co gamma source. The ultra violet and visible (UV/Vis) spectrophotometry were used to examine the optical properties of chitosan film. Also, Fourier transform infrared (FTIR) analysis was used to detect and trace any change in structural bands that may take place upon irradiation.

Findings

Increase in optical density of the chitosan film was recorded at 298 nm that correlated with increasing in the absorbed doses. Change in color of the film from pale yellow to denser yellow was detected upon increasing the absorbed doses. The close investigation for UV/Vis and FTIR analysis nominates the chitosan film to be used as a label-dosimeter in the range of 10–120 kGy depending on chitosan concentrations. The chitosan film has an excellent stability in different environmental conditions with ±3.7% uncertainty in measurements (2σ, approximately equal to a 95% confidence level).

Research limitations/implications

Chitosan film may be used as a medium and high-dose monitor with an acceptable overall uncertainty in routine radiation processing

Originality/value

The useful dose range from 10 to 80 kGy was detected for different concentrations of chitosan (0.5, 1, 1.5 Wt%) that correlated with increasing the absorbed dose, which is assigned to the linear parts in the target response curves. For the dose range 10–120 kGy, the film may be used as label dosimeter with detected color change from pale yellow to dense yellow.

Details

Pigment & Resin Technology, vol. 51 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 May 1998

F.B. Pyatt and D.D. Gilbertson

This paper compares the gamma‐radioactivity values determined in an intertidal ecosystem on the Atlantic island of Barra in the Western Isles of Scotland in 1989 and 1994…

Abstract

This paper compares the gamma‐radioactivity values determined in an intertidal ecosystem on the Atlantic island of Barra in the Western Isles of Scotland in 1989 and 1994. Distinct differences in the accumulation values in different trophic levels were detected on each occasion, but, in the intervening five years between surveys, there have also been marked reductions in the gamma counts in many different organisms of each trophic level. Gamma‐radioactivity has continued to move through the sandy soils of the machair coastal dunes system, and hence away from the rooting zone of the vegetation. The decreasing gamma‐radioactivities noted point to a shoreline ecosystem that is recovering from the input of Chernobyl fallout.

Details

Environmental Management and Health, vol. 9 no. 2
Type: Research Article
ISSN: 0956-6163

Keywords

Article
Publication date: 1 December 1957

Previous work has suggested that the adhesion between oil and metallic surfaces of an engine could be an important factor in determining crankcase cleanliness. It can be shown…

Abstract

Previous work has suggested that the adhesion between oil and metallic surfaces of an engine could be an important factor in determining crankcase cleanliness. It can be shown that it is only necessary to measure the spreading pressure of an oil on metal in order to get a direct measure of the work of adhesion, Surface tensions of lubrictaing oils vary very little and it can be assumed that the critical film pressure (C.F.P.) obtained with a given apparatus is an acceptable measure of the work of adhesion as well as of the spreading pressure. Oils of similar properties may vary tenfold in their C.F.P's. The addition of additives influences the spreading pressure, the largest increments in C.F.P. being given by dispersant and detergent additives.

Details

Industrial Lubrication and Tribology, vol. 9 no. 12
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 29 September 2020

Awad AL Zahrany, Khalid Rabaeh, Molham Eyadeh and Ahmed Basfar

The purpose of this paper is to present a radiochromic film dosimeter containing polyvinyl alcohol (PVA) matrix and various concentrations of methyl red (MR) dye for high dose…

Abstract

Purpose

The purpose of this paper is to present a radiochromic film dosimeter containing polyvinyl alcohol (PVA) matrix and various concentrations of methyl red (MR) dye for high dose measurements.

Design/methodology/approach

The MR-PVA films were exposed to irradiation up to 60 kGy using 60Co source of gamma ray. The ultraviolet and visible regions (UV/VIS) spectrophotometry were used to examine the optical density of pre-and post-irradiated dosimeters at 424 nm.

Findings

The dose sensitivity of MR-PVA films increases significantly with increasing MR dye concentrations in the dose range of 5 to 60 kGy. The impact of relative humidity, irradiation temperature, dose rate and the stability of the films has been analyzed. The overall uncertainty of the MR-PVA film dosimeter is 6.12% (Double Standard-deviation, 95% confidence level).

Practical implications

It was found that the MR-PVA films may be used as high dose dosimeter with an acceptable overall uncertainty in routine industrial radiation processing.

Originality/value

The color bleaching of irradiated MR-PVA films in terms of specific absorbance curves increases significantly with increasing absorbed dose up to 60 kGy.

Details

Pigment & Resin Technology, vol. 50 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 2003

K. Arshak and O. Korostynska

Thin films of tellurium dioxide (TeO2) and indium oxide (In2O3) mixtures were investigated for γ‐radiation dosimetry purpose. Samples were fabricated using thermal vacuum…

Abstract

Thin films of tellurium dioxide (TeO2) and indium oxide (In2O3) mixtures were investigated for γ‐radiation dosimetry purpose. Samples were fabricated using thermal vacuum evaporation technique. The electrical properties of mixed oxides thin films [(TeO2)1−x(In2O3)x, where x=0 and 10 per cent by weight] and their changes under the influence of γ‐radiation were investigated. Samples with contacts having a planar structure showed increase in the values of current with the increase in radiation dose up to a certain dose level. Thin films in the form of pn‐junctions were fabricated with (TeO2)1−x(In2O3)x as p‐type material and sulphur as n‐type material. These pn‐junctions exhibited Zener diode behaviour. The current‐voltage characteristics for as‐deposited and γ‐irradiated samples were recorded. The level of response for all the fabricated devices was found to be highly dependent on the composition of the exposed material.

Details

Sensor Review, vol. 23 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 1992

N.M.S. Barnaby and S. Frost

The quantification of the effects of low‐level radiation is basedmainly upon epidemiological studies. Recent reassessment of the datafrom Japanese survivors of the effects of…

Abstract

The quantification of the effects of low‐level radiation is based mainly upon epidemiological studies. Recent reassessment of the data from Japanese survivors of the effects of radiation from Second World War bombing and from ankylosing spondylitis patients reveals an increased risk of leukaemia from low level exposures. The implications for the health of radiation workers and the management of the nuclear power industry are important. There is controversy over possible hormetic effects. A true hormetic effect has to be seen to affect the whole person. Although there is evidence at the cellular level that low‐level radiation may enhance the body′s immune system, this is not sufficient to justify widespread scientific support. This is particularly since the speculation on the effects of low‐level radiation and the connection with the occurrence of leukaemia is creating concern. The increases in the incidence of disease and the pattern of distribution remain difficult to explain while the task of translating the evidence from individual cases proves increasingly difficult in the context of varied types of radiation and the properties of particular radionuclides.

Details

Environmental Management and Health, vol. 3 no. 1
Type: Research Article
ISSN: 0956-6163

Keywords

Open Access
Article
Publication date: 3 April 2024

Tatiana da Costa Reis Moreira, Daniel Luiz de Mattos Nascimento, Yelena Smirnova and Ana Carla de Souza Gomes dos Santos

This paper explores Lean Six Sigma principles and the DMAIC (define, measure, analyze, improve, control) methodology to propose a new Lean Six Sigma 4.0 (LSS 4.0) framework for…

Abstract

Purpose

This paper explores Lean Six Sigma principles and the DMAIC (define, measure, analyze, improve, control) methodology to propose a new Lean Six Sigma 4.0 (LSS 4.0) framework for employee occupational exams and address the real-world issue of high-variability exams that may arise.

Design/methodology/approach

This study uses mixed methods, combining qualitative and quantitative data collection. A detailed case study assesses the impact of LSS interventions on the exam management process and tests the applicability of the proposed LSS 4.0 framework for employee occupational exams.

Findings

The results reveal that changing the health service supplier in the explored organization caused a substantial raise in occupational exams, leading to increased costs. By using syntactic interoperability, lean, six sigma and DMAIC approaches, improvements were identified, addressing process deviations and information requirements. Implementing corrective actions improved the exam process, reducing the number of exams and associated expenses.

Research limitations/implications

It is important to acknowledge certain limitations, such as the specific context of the case study and the exclusion of certain exam categories.

Practical implications

The practical implications of this research are substantial, providing organizations with valuable managerial insights into improving efficiency, reducing costs and ensuring regulatory compliance while managing occupational exams.

Originality/value

This study fills a research gap by applying LSS 4.0 to occupational exam management, offering a practical framework for organizations. It contributes to the existing knowledge base by addressing a relatively novel context and providing a detailed roadmap for process optimization.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 19 January 2024

Natthawut Daoset, Samroeng Inglam, Sujin Wanchat and Nattapon Chantarapanich

This paper aims to investigate the influence of post-curing temperature, post-curing time and gamma ray irradiation dose upon the tensile and compressive mechanical properties of…

Abstract

Purpose

This paper aims to investigate the influence of post-curing temperature, post-curing time and gamma ray irradiation dose upon the tensile and compressive mechanical properties of the medical graded vat photopolymerization parts.

Design/methodology/approach

Medical graded vat photopolymerization specimens, made from photopolymer resin, were fabricated using bottom-up vat photopolymerization machine. Tensile and compressive tests were conducted to assess the mechanical properties. The specimens were categorized into uncured and post-curing groups. Temperature post-processing and/or gamma irradiation exposure were for post-curing specimens. The post-curing parameters considered included temperature levels of 50°C, 60°C and 70°C, with 1, 2, 3 and 4 h periods. For the gamma irradiation, the exposure doses were 25, 50, 75 and 100 kGy.

Findings

Post-curing improved the mechanical properties of medical graded vat photopolymerization parts for both tensile and compressive specimens. Post-curing temperature greater than 50°C or a prolonged post-curing period of more than 1 h made insignificant changes or deterioration in mechanical properties. The optimal post-curing condition was therefore a 50°C post-curing temperature with 1 h post-curing time. Exposure to gamma ray improved the compressive mechanical properties, but deteriorated tensile mechanical properties. Higher gamma irradiation doses could decrease the mechanical properties and also make the part more brittle, especially for doses more than 25 kGy.

Originality/value

The obtained results would be beneficial to the medical device manufacturer who fabricated the invasive temporary contact personalized surgical instruments by vat photopolymerization technique. In addition, it also raised awareness in excessive gamma sterilization in the medical graded vat photopolymerization parts.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 1957

AMONGST the many engineering problems associated with the new field of nuclear power plants is that of lubricants. The problem here is more to do with lubricants than lubrication…

Abstract

AMONGST the many engineering problems associated with the new field of nuclear power plants is that of lubricants. The problem here is more to do with lubricants than lubrication since in spite of very high temperatures, existing products are generally capable of providing adequate lubrication, even although some special materials may need to be devised to provide longer life and special methods of application may be required. In most cases, pumps and turbines will operate at similar speeds and with similar bearing loads as those in conventional power stations and conventional high grade lubricants will, in most cases, meet the bill.

Details

Industrial Lubrication and Tribology, vol. 9 no. 4
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 1 March 1967

“It is generally accepted that the food industry must be scientifically based to cope with the problems, particularly of public health, which arise as new processes of growing…

Abstract

“It is generally accepted that the food industry must be scientifically based to cope with the problems, particularly of public health, which arise as new processes of growing, manufacturing, packaging and preserving food depart even further from traditional ways.”

Details

British Food Journal, vol. 69 no. 3
Type: Research Article
ISSN: 0007-070X

21 – 30 of 516