Search results

1 – 10 of 23
Article
Publication date: 5 February 2024

Dongsheng Wang, Xiaohan Sun, Yingchang Jiang, Xueting Chang and Xin Yonglei

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms…

Abstract

Purpose

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms areas, because of their excellent anticorrosion performance and relatively lower production costs. However, the properties of SCBS, including the mechanical strength, weldability and the anticorrosion behavior, have a direct relation with the manufacturing process and can affect their practical applications. This paper aims to review the application and the properties requirements of SCBS in marine environments to promote the application of this new material in more fields.

Design/methodology/approach

In this paper, the manufacturing process, welding and corrosion-resistant properties of SCBS were introduced systematically by reviewing the related literatures, and some results of the authors’ research group were also introduced briefly.

Findings

Different preparation methods, such as rolling composite, casting rolling composite, explosive composite, laser cladding and plasma arc cladding, as well as the process parameters, including the vacuum degree, rolling temperature, rolling reduction ratio, volume ratios of liquid to solid, explosive ratio and the heat treatment, influenced a lot on the properties of the SCBS through changing the interface microstructures. Otherwise, the variations in rolling temperature, pass, reduction and the grain size of clad steel also brought the dissimilarities of the mechanical properties, microhardness, bonding strength and toughness. Another two new processes, clad teeming method and interlayer explosive welding, deserve more attention because of their excellent microstructure control ability. The superior corrosion resistance of SCBS can alleviate the corrosion problem in the marine environment and prolong the service life of the equipment, but the phenomenon of galvanic corrosion should be noted as much as possible. The high dilution rate, welding process specifications and heat treatment can weaken the intergranular corrosion resistance in the weld area.

Originality/value

This paper summarizes the application of SCBS in marine environments and provides an overview and reference for the research of stainless-clad bimetallic steel.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 December 2023

Ziru Zhou, Songlin Zheng, Jiahuan Chen, Ting Zhang, Zhen He and Yuxin Wang

The high specific strength makes magnesium alloys have a wide range of applications in aerospace, military, automotive, marine and construction industries. However, its poor…

Abstract

Purpose

The high specific strength makes magnesium alloys have a wide range of applications in aerospace, military, automotive, marine and construction industries. However, its poor corrosion resistance and weldability have limited its development and application. Friction stir welding (FSW) can effectively avoid the defects of fusion welding. However, the microstructure, mechanical properties and corrosion behavior of FSW joints in magnesium alloys vary among different regions. The purpose of this paper is to review the corrosion of magnesium alloy FSW joints, and to summarize the protection technology of welded joints.

Design/methodology/approach

The corrosion of magnesium alloy FSW joints includes electrochemical corrosion and stress corrosion. This paper summarizes corrosion protection techniques for magnesium alloys FSW joints, focusing on composition, microstructure changes and surface treatment methods.

Findings

Currently, this research is mainly focused on enhancing the corrosion resistance of magnesium alloy FSW joints by changing compositions, structural modifications and surface coating technologies. Refinement of the grains can be achieved by adjusting welding process parameters, which in turn minimizes the effects of the second phase on the alloy’s corrosion resistance.

Originality/value

This paper presents a comprehensive review on the corrosion and protection of magnesium alloys FSW joints, covering the latest research advancements and practical applications. It aims to equip researchers with a better insight into the field and inspire new studies on this topic.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 31 July 2023

Badegül Tunçay, Harun Çuğ, Tansel Tunçay, Dursun Özyürek and Katarzyna Cesarz-Andraczke

This study aims to investigate NiTi alloys’ characterization and corrosion behaviour produced by two different powder metallurgy (PM) methods.

Abstract

Purpose

This study aims to investigate NiTi alloys’ characterization and corrosion behaviour produced by two different powder metallurgy (PM) methods.

Design/methodology/approach

It was pre-formed under a protective atmosphere at 900 °C under a force of 45 MPa and sintered for 1 h under 10–6 Mbar in an atmosphere-controlled heat treatment furnace at 1,100 °C. The relationship between microstructural properties, SEM, XRD, density, microhardness and corrosion behaviour of pre-alloyed NiTi alloys produced by two different methods with the production method was investigated.

Findings

As a result of the studies, TiO, NiTi, NiTi2 and Ni3Ti intermetallics were determined in XRD examinations. The best surface roughness was observed in the mechanically milled (MM’ed) pre-alloyed NiTi alloy compared to the pre-alloyed NiTi alloy mixed with turbula. The corrosion tests performed in 3.5% NaCl solution determined that the MM’ed pre-alloyed NiTi alloy had better corrosion resistance than the pre-alloyed NiTi alloy mixed with turbula. Pitting corrosion was visualized in the SEM images taken from the corrosion surfaces.

Originality/value

Two different PM methods produced pre-alloyed NiTi powders, and the effects of these methods on the mechanical and corrosion resistance of NiTi alloys were systematically investigated for the first time.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 February 2024

Lu Luo, Kang Qi and Hualiang Huang

The purpose of this paper is to investigate the effects of chloride ion concentration and applied bias voltage on the electrochemical migration (ECM) behavior between Cu and Ag…

Abstract

Purpose

The purpose of this paper is to investigate the effects of chloride ion concentration and applied bias voltage on the electrochemical migration (ECM) behavior between Cu and Ag under an NaCl thin electrolyte layer (TEL).

Design/methodology/approach

A self-made experimental setup for the ECM behavior between Cu and Ag was designed. An HD video measurement microscopy was used to observe the typical dendrite/corrosion morphology and pH distribution. Short-circuit time (SCT), short-circuit current density and the influence of the galvanic effect between Cu and Ag on their ECM behavior were studied by electrochemical tests. The surface morphology and composition of dendrite were characterized by FESEM/EDS.

Findings

The SCT increased with increasing NaCl concentration but decreased with increasing applied bias voltage, and the SCT between Cu and Ag was less than that between Cu and Cu because their galvanic effect accelerated the dissolution and migration of Cu. When NaCl concentration was less than or equal to 6 mmol/L, cedar-like dendrite was formed, whereas no dendrite formed and only precipitation occurred at high chloride ion concentration (100 mmol/L). The composition of the dendrite between Cu and Ag was copper.

Research limitations/implications

The significance of this study is to clarify the ECM failure mechanism of printed circuit board (PCB) with an immersion silver surface finish (PCB-ImAg).

Practical implications

This study provides a basic theoretical basis for the selection of protective measures and metal coatings for PCB.

Social implications

The social implication of this study is to predict the service life of PCB.

Originality/value

The ECM behavior of dissimilar metals under a TEL was investigated, the influence of the galvanic effect between them on their ECM was discussed, and the SCT increased with increasing NaCl concentration.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 April 2024

Dejing Zhou, Yanming Xia, Zhiming Gao and Wenbin Hu

This study aims to investigate the influence mechanism of brazing and aging on the strengthening and corrosion behavior of novel multilayer sheets (AA4045/AA7072/AA3003M/AA4045).

Abstract

Purpose

This study aims to investigate the influence mechanism of brazing and aging on the strengthening and corrosion behavior of novel multilayer sheets (AA4045/AA7072/AA3003M/AA4045).

Design/methodology/approach

Polarization curve tests, immersion experiments and transmission electron microscopy analysis were used to study the corrosion behavior and tensile properties of the sheets before and after brazing and aging.

Findings

The strength of the sheet is weakened after brazing due to brittle eutectic phases, and recovered after aging due to enhanced precipitation strengthening in the AA7072 interlayer. The core of nonbrazed sheets cannot be protected due to the significant galvanic coupling effect between the intermetallic particles and the substrate. Brazing and aging treatments promote the redissolved of second phased and limit corrosion along the eutectic region in the clad, allowing the core to be protected.

Originality/value

AA7xxx alloy was added to conventional brazed sheets to form a novel Al alloy composite sheet with AA4xxx/AA7xxx/AA3xxx structure. The strengthening and corrosion mechanism of the sheet was proposed. The added interlayer can sacrificially protect the core from corrosion and improves strength after aging treatment.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 August 2023

Yingshuang Liu, Ran Liu, Dalei Zhang, Shaohua Xing, Xiaohui Dou, Xinwei Zhang and Zonghao He

The corrosion behaviour of titanium alloy surface when fluid with different flow rates flows through welded joints with different residual heights was explored.

Abstract

Purpose

The corrosion behaviour of titanium alloy surface when fluid with different flow rates flows through welded joints with different residual heights was explored.

Design/methodology/approach

The experiment uses a combination of array electrodes and simulation.

Findings

It is found that when the weld reinforcement exists, the corrosion tendency of both ends of the weld metal is greater than that of other parts of the welded joint due to the influence of high turbulence kinetic energy and shear stress. The presence of weld reinforcement heights makes the fluid behind it fluctuate greatly. The passivation films of both the base metal (BM) at the rear and the heat-affected zone (HAZ) are more prone to corrosion than those of the front BM and HAZ, and the passivation film is rougher.

Originality/value

The combination of test and simulation was used to explore the influence of electrochemical and hydrodynamic factors on the corrosion behaviour of titanium alloy-welded joints when welding residual height existed.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 January 2024

Yan Gao, Qiubo Li, Wei Wu, Qiwei Wang, Yizhe Su, Junxi Zhang, Deyuan Lin and Xiaojian Xia

The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.

Abstract

Purpose

The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.

Design/methodology/approach

Potentiodynamic polarization tests were performed to study the electrochemical process of the aluminum alloys. Salt spray tests and weight loss tests were carried out to study the atmospheric corrosion behavior. The corrosion morphology of the alloys was observed, and the products were analyzed.

Findings

The corrosion process of four aluminum alloys was accelerated in the current-carrying condition. Moreover, the acceleration effect on A2024 and A7075 was much stronger than that on A1050 and A5052. The main factors would be the differences in microstructure and corrosion resistance between these alloys. As the carried current increased, the corrosion rate and corrosion current density of the aluminum alloys gradually increased, with the protection of the corrosion product film decreasing linearly.

Originality/value

This is a recent study on the corrosion behavior of conductors under current-carrying condition, which truly understands the corrosion status of power grid materials. Relevant results provide support for the corrosion protection and safe service of aluminum alloy in power systems.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 October 2022

Reza Amini and Pooneh Kardar

This paper aims to achieve phosphating via optimal features of Mg metal as a suitable base coating, which is considered for other properties such as barrier properties against the…

Abstract

Purpose

This paper aims to achieve phosphating via optimal features of Mg metal as a suitable base coating, which is considered for other properties such as barrier properties against the passage of several factors.

Design/methodology/approach

In this research, in the phosphate bath, immersion time, temperature and the content of sodium nitrite as an accelerator were changed.

Findings

As a result, increasing the immersion time of AZ31 Mg alloy samples in the phosphating bath as well as increasing the ratio of sodium dodecyl sulfate (SDS) concentration to sodium nitrite concentration in the phosphating bath formulation increase the mass of phosphating formed per unit area of the Mg alloy. The results of the scanning electron microscope test showed phosphating is not completely formed in short immersion times, which is a thin and uneven layer.

Research limitations/implications

Mg and its alloys are sensitive to galvanic corrosion, which would lead to generating several holes in the metal. As such, it causes a decrease in mechanical stability as well as an unfavorable appearance.

Practical implications

Mg is used in several industries such as automobile and computer parts, mobile phones, astronaut compounds, sports goods and home appliances.

Social implications

Nevertheless, Mg has high chemical reactivity, so an oxide-hydroxide layer is formed on its surface, which has a harmful effect on the adhesion and uniformity of the coating applied on Mg.

Originality/value

By increasing the ratio of SDS concentration to sodium nitrite concentration in the phosphating bath, the corrosion resistance of the phosphating increases.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 December 2023

Zhenyu Ma, Yupeng Zhang, Xuguang An, Jing Zhang, Qingquan Kong, Hui Wang, Weitang Yao and Qingyuan Wang

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial…

Abstract

Purpose

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial reference basis for the development of high-performance carbide reinforced FeCrAl alloys with good mechanical and corrosion properties in the future.

Design/methodology/approach

Nano ZrC reinforced FeCrAl alloys were prepared by mechanical alloying and spark plasma sintering. Phases composition, tensile fractography, corrosion morphology and chemical composition of nano ZrC reinforced FeCrAl alloys were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. Microhardness and tensile properties of nano ZrC reinforced FeCrAl alloys were investigated by mechanical testing machine and Vickers hardness tester. Electrochemical corrosion properties of nano ZrC reinforced FeCrAl alloys were investigated by electrochemical workstation in 3.5 wt.% NaCl solution.

Findings

The results showed that addition of nano ZrC can effectively improve the mechanical and corrosion properties. However, excessive nano ZrC could decrease the mechanical properties and reduce the corrosion resistance. In all the FeCrAl alloys, FeCrAl–0.6 wt.% ZrC alloy exhibits the optimum mechanical properties with an ultimate tensile strength, elongation and hardness of 990.7 MPa, 24.1% and 335.8 HV1, respectively, and FeCrAl–0.2 wt.% ZrC alloy has a lower corrosion potential (−0.179 V) and corrosion current density (2.099 µA/cm2) and larger pitting potential (0.497 V) than other FeCrAl–ZrC alloys, showing a better corrosion resistance.

Originality/value

Adding proper nano ZrC particles can effectively improve the mechanical and corrosion properties, while the excessive nano ZrC is harmful to the mechanical and corrosion properties of FeCrAl alloys, which provides an instruction to develop high-performance FeCrAl cladding materials.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 January 2024

Zhengwei Song, Zhi-Hui Xie, Lifeng Ding and Shengjian Zhang

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Abstract

Purpose

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Design/methodology/approach

The preparation methods, wettability and corrosion resistance of SHPS on Mg alloy in the past three years are systematically described in this paper.

Findings

Two types of SHPS, including single-layer and multilayer coatings for corrosion protection of Mg alloy are summarized. Preparing multilayered coatings with multifunction is the current trend in developing SHPS on Mg alloy.

Originality/value

This paper reviewed the preparation methods and corrosion resistance of SHPS on Mg alloys. It provides a valuable reference for researchers to develop highly durable SHPS with excellent corrosion resistance for Mg alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 23