Search results

1 – 10 of 96
Article
Publication date: 11 July 2023

K. Madhana, L.S. Jayashree and Kalaivani Perumal

Human gait analysis is based on a significant part of the musculoskeletal, nervous and respiratory systems. Gait analysis is widely adopted to help patients increase community…

104

Abstract

Purpose

Human gait analysis is based on a significant part of the musculoskeletal, nervous and respiratory systems. Gait analysis is widely adopted to help patients increase community involvement and independent living.

Design/methodology/approach

This paper presents a system for the classification of abnormal human gaits using a Markerless 3D Motion Capture device. This study aims at examining and estimating the spatiotemporal and kinematic parameters obtained by 3D gait analysis in diverse groups of gait-impaired subjects and compares the parameters with that of healthy participants to interpret the gait patterns.

Findings

The classification is based on mathematical models that distinguish between normal and abnormal gait patterns depending on the deviations in the gait parameters. The difference between the gait measures of the control and each disease group was examined using 95% limits of agreement by the Bland and Altman method. The scatter plots demonstrated gait variability in Parkinsonian and ataxia gait and knee joint angle variation in hemiplegic gait when compared with those of healthy controls. To prove the validity of the Kinect camera, significant correlations were detected between Kinect- and inertial-based gait tests.

Originality/value

The various techniques used for gait assessments are often high in price and have existing limitations like the hindrance of components. The results suggest that the Kinect-based gait assessment techniques can be used as a low-cost, less-intrusive alternative to expensive infrastructure gait lab tests in the clinical environment.

Details

Journal of Enabling Technologies, vol. 17 no. 2
Type: Research Article
ISSN: 2398-6263

Keywords

Article
Publication date: 1 November 2023

Yifan Pan, Lei Zhang, Dong Mei, Gangqiang Tang, Yujun Ji, Kangning Tan and Yanjie Wang

This study aims to present a type of metamorphic mechanism-based quadruped crawling robot. The trunk design of the robot has a metamorphic mechanism, which endows it with…

Abstract

Purpose

This study aims to present a type of metamorphic mechanism-based quadruped crawling robot. The trunk design of the robot has a metamorphic mechanism, which endows it with excellent crawling capability and adaptability in challenging environments.

Design/methodology/approach

The robot consists of a metamorphic trunk and four series-connected three-joint legs. First, the walking and steering strategy is planned through the stability and mechanics analysis. Then, the walking and steering performance is examined using virtual prototype technology, as well as the efficacy of the walking and turning strategy.

Findings

The metamorphic quadruped crawling robot has wider application due to its variable trunk configuration and excellent leg motion space. The robot can move in two modes (constant trunk and trunk configuration transformation, respectively, while walking and rotating), which exhibits outstanding stability and adaptability in the examination and verification of prototypes.

Originality/value

The design can enhance the capacity of the quadruped crawling robot to move across a complex environment. The virtual prototype technology verifies that the proposed walking and steering strategy has good maneuverability and stability, which considerably expands the application opportunity in the fields of complicated scene identification and investigation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 September 2023

Xu Hao, Lang Wei, Yue Qiao, Shengzui Xu, Jian Bin Liao, Yu Xi, Wang Wei and Zhi-Wei Liu

The computing power of the legged robot is not enough to perform high-frequency updates for the full-body model predictive control (MPC) of the robot, which is a common problem…

Abstract

Purpose

The computing power of the legged robot is not enough to perform high-frequency updates for the full-body model predictive control (MPC) of the robot, which is a common problem encountered in the gait research of the legged robot. The purpose of this paper is to propose a high-frequency MPC control method for the bounding gait of a parallel quadruped robot.

Design/methodology/approach

According to the bounding gait characteristics of the robot, the quadruped robot model is simplified to an equivalent plane bipedal model. Under the biped robot model, the forces between the robot’s feet and the ground are calculated by MPC. Then, the authors apply a proportional differential controller to distribute these forces to the four feet of the quadruped robot. The robot video can be seen at www.bilibili.com/video/BV1je4y1S7Rn.

Findings

To verify the feasibility of the controller, a prototype was made, and the controller was deployed on the actual prototype and then fully analyzed through experiments. Experiments show that the update frequency of MPC could be stabilized at 500 Hz while the robot was running in the bounding gait stably and efficiently.

Originality/value

This paper proposes a high-frequency MPC controller under the simplified model, which has a higher working efficiency and more stable control performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 March 2024

Ruoxing Wang, Shoukun Wang, Junfeng Xue, Zhihua Chen and Jinge Si

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged…

Abstract

Purpose

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.

Design/methodology/approach

In this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.

Findings

The experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.

Originality/value

The study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 18 September 2023

Yali Han, Shunyu Liu, Jiachen Chang, Han Sun, Shenyan Li, Haitao Gao and Zhuangzhuang Jin

This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.

Abstract

Purpose

This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.

Design/methodology/approach

In this paper, the valve-controlled asymmetrical hydraulic cylinder is selected for driving the hip and knee joint of exoskeleton. Pressure shoe is developed that purpose on detecting changes in plantar force, and a fuzzy recognition algorithm using plantar pressure is proposed. Dynamic model of the exoskeleton is established, and the sliding mode control is developed to implement the position tracking of exoskeleton. A series of prototype experiments including benchtop test, full assistance, partial assistance and loaded walking experiments are set up to verify the tracking performance and power-assisted effect of the proposed exoskeleton.

Findings

The control performance of PID control and sliding mode control are compared. The experimental data shows the tracking trajectories and tracking errors of sliding mode control and demonstrate its good robustness to nonlinearities. sEMG of the gastrocnemius muscle tends to be significantly weakened during assisted walking.

Originality/value

In this paper, a structure that the knee joint and hip joint driven by the valve-controlled asymmetrical cylinder is used to provide walking assistance for the wearer. The sliding mode control is proposed to deal with the nonlinearities during joint rotation and fluids. It shows great robustness and frequency adaptability through experiments under different motion frequencies and assistance modes. The design and control method of exoskeleton is a good attempt, which takes positive impacts on the productivity or quality of the life of wearers.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Yini Wei, Guiqiang Diao and Zilun Tang

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in…

Abstract

Purpose

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in terms of articles meant to be worn, their prominence among devices and systems meant for cadence is overshadowed by electronic products such as accelerometers, wristbands and smart phones. Athletes and sports enthusiasts using knee sleeves should be able to track their performances and monitor workout progress without the need to carry other devices with no direct sport utility, such as wristbands and wearable accelerometers. The purpose of this study thus is to contribute to the broad area of wearable devices for cadence application by developing a cheap but effective and efficient stride measurement system based on a knee sleeve.

Design/methodology/approach

A textile strain sensor is designed by weft knitting silver-plated nylon yarn together with nylon DTY and covered elastic yarn using a 1 × 1 rib structure. The area occupied by the silver-plated yarn within the structure served as the strain sensor. It worked such that, upon being subjected to stress, the electrical resistance of the sensor increases and in turn, is restored when the stress is removed. The strip with the sensor is knitted separately and subsequently sewn to the knee sleeve. The knee sleeve is then connected to a custom-made signal acquisition and processing system. A volunteer was employed for a wearer trial.

Findings

Experimental results establish that the number of strides taken by the wearer can easily be correlated to the knee flexion and extension cycles of the wearer. The number of peaks computed by the signal acquisition and processing system is therefore counted to represent stride per minute. Therefore, the sensor is able to effectively count the number of strides taken by the user per minute. The coefficient of variation of over-ground test results yielded 0.03%, and stair climbing also obtained 0.14%, an indication of very high sensor repeatability.

Research limitations/implications

The study was conducted using limited number of volunteers for the wearer trials.

Practical implications

By embedding textile piezoresistive sensors in some specific garments and or accessories, physical activity such as gait and its related data can be effectively measured.

Originality/value

To the best of our knowledge, this is the first application of piezoresistive sensing in the knee sleeve for stride estimation. Also, this study establishes that it is possible to attach (sew) already-knit textile strain sensors to apparel to effectuate smart functionality.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 September 2023

Yue Qiao, Wang Wei, Yunxiang Li, Shengzui Xu, Lang Wei, Xu Hao and Re Xia

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the…

147

Abstract

Purpose

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the transition zone between land and water.

Design/methodology/approach

Based on the dynamics model, the authors selected the appropriate state variables to construct the state space model of the robot and estimated the feedback state of the robot through the maximum a posteriori probability estimation. The nonlinear predictive model controller of the robot is constructed by local linearization of the model to perform closed-loop control on the overall motion of the robot. For the control problem of the terminal trajectory, using the neural rhythmic movement theory in bionics to construct a robot central pattern generator (CPG) for real-time generation of terminal trajectory.

Findings

In this paper, the motion state of WFF-AmphiRobot is estimated, and a model-based overall motion controller for the robot and an end-effector controller based on neural rhythm control are constructed. The effectiveness of the controller and motion control algorithm is verified by simulation and physical prototype motion experiments on land and underwater, and the robot can ideally complete the desired behavior.

Originality/value

The paper designed a controller for WFF-AmphiRobot. First, when constructing the robot state estimator in this paper, the robot dynamics model is introduced as the a priori estimation model, and the error compensation of the a priori model is performed by the method of maximum a posteriori probability estimation, which improves the accuracy of the state estimator. Second, for the underwater oscillation motion characteristics of the flipper, the Hopf oscillator is used as the basis, and the flipper fluctuation equation is modified and improved by the CPG signal is adapted to the flipper oscillation demand. The controller effectively controls the position error and heading angle error within the desired range during the movement of the WFF-AmphiRobot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 September 2023

Hande Argunsah and Begum Yalcin

Biofeedback is used for regulating vestibular adaptation and balance by providing real-time stimulus to the individual during physical activities. This study aimed at (1…

Abstract

Purpose

Biofeedback is used for regulating vestibular adaptation and balance by providing real-time stimulus to the individual during physical activities. This study aimed at (1) developing a wearable device, which tracks balance, counts the number and the direction of balance losses and provides haptic biofeedback through real-time vibration stimulus (2) investigating device efficacy on an adolescent medulloblastoma patient during static and dynamic tasks.

Design/methodology/approach

A 16-year-old medulloblastoma patient used the device during 10-m walking and single-leg stance tests. The knee joint kinematics and the number and direction of balance losses were recorded for “with” and “without” biofeedback conditions.

Findings

The device helped regulate the knee joint kinematics and reduce the number of balance losses of the medulloblastoma patient. The knee joint movement pattern similarity of the control subject was highly correlated (R2 = 0.997, RMSE = 1.232). Conversely, medulloblastoma patient knee joint movement pattern similarity was relatively weak (R2 = 0.359, RMSE = 18.6) when “with” and “without” biofeedback conditions were compared. The number of balance losses decreased when the medulloblastoma patient was guided with biofeedback.

Research limitations/implications

The major limitation of this pilot study is the lack of a large and homogeneous number of participants. The medulloblastoma patient used the device while walking after she was given enough time to get used to the tactile biological feedback, so the long-term effect of the device and biofeedback guidance were not investigated. Additionally, the potential desensitization with prolonged use of the device was not evaluated.

Practical implications

Biofeedback reduced the number of balance losses; additionally, the knee joint movement pattern was regulated during static and dynamic tasks. This device can be integrated into the physical therapy of patients with balance, vestibular and postural control impairments.

Social implications

This is compact and has an easy-to-wear design, patients, who have balance and postural control impairments, can practically use the device during their activities of daily living.

Originality/value

The device promotes physical activity adaptation and regulates gait through continuous and real-time balance control. Its design makes it simple for the user to wear it beneath clothing while using the sensor.

Details

Journal of Enabling Technologies, vol. 17 no. 3/4
Type: Research Article
ISSN: 2398-6263

Keywords

Article
Publication date: 27 April 2023

Diego Henrique Antunes Nascimento, Fabrício Anicio Magalhães, George Schayer Sabino, Renan Alves Resende, Maria Lucia Machado Duarte and Claysson Bruno Santos Vimieiro

Currently, several studies have been published using sensorized insoles for estimating ground reaction force using plantar pressure. However, information on design parameters…

Abstract

Purpose

Currently, several studies have been published using sensorized insoles for estimating ground reaction force using plantar pressure. However, information on design parameters, manufacturing techniques and guidelines for developing insoles is scarce, often leaving gaps that do not allow reproducing the insole. This study aims to empirically investigate the main parameters of constructing a sensorized insole for application in human gait.

Design/methodology/approach

Two devices were built to evaluate the force sensors. The first focuses on the construction of the sensors with different settings: the density of the sensor’s conductive trails (thickness and distance of the trails) and the inertia of the sensors (use of spacers to prevent unwanted readings). The second device focuses on the data capture and processing system: resolution of the analog–digital converter, acquisition rate and sensor activation level.

Findings

The resolution increase of the analog–digital converter and acquisition rate do not contribute to noise increase. Reducing the sensors’ coverage area can increase sensorized insole capacity. The inertia of the sensors can be adjusted using spacers without changing the electrical circuit and acquisition system.

Originality/value

Most sensorized insoles use commercial sensors. For this reason, it is not possible a full customization. This paper maps the main variables to manufacture custom sensors and data acquisition systems. This work also presents a case study where it is possible to see the influence of the parameters in the correlation between the sensorized insole and an instrumented treadmill with a force platform.

Details

Sensor Review, vol. 43 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 October 2021

Abhilash C.R., Sriraksha Murali, M. Abdul Haq, Tanay N. Bysani and N.S. Narahari

In certain industrial operations, workers are required to stand for a prolonged duration. This leads to muscular fatigue in the legs, posing a threat to the productivity and…

Abstract

Purpose

In certain industrial operations, workers are required to stand for a prolonged duration. This leads to muscular fatigue in the legs, posing a threat to the productivity and well-being of the workers. This paper aims to address this problem of women in the clothing industry with an exoskeleton designed for lower extremities and improve productivity.

Design/methodology/approach

Ulrich’s product design approach has been followed with suitable modifications. The methodology involves a study to justify the need for this product and terminating at the physical and virtual evaluations of the product. Required anthropometric parameters are considered along the design process.

Findings

The exoskeleton discussed in this paper is an innovative product made of Aluminium 6061 alloy. During the simulation phase of the product, total von-mises stresses to a part bearing 1 leg were 31.5 MPa, 94.7 MPa and 284 MPa for aluminium, SS308 and springs, respectively. These values are below the yield limit by a great margin. Based on a user survey of this product, 72% of the targeted customers were interested in buying. Also, comparing electromyography (EMG) mean value of the voltage between workers’ leg with and without exoskeleton revealed that there was an improvement in the voltage by 2.5% when exoskeleton was used.

Originality/value

This paper emphasizes, for the first time – the necessity of an exoskeleton indigenized for the Indian population and the process of realizing it by designing an exoskeleton.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 96