Search results

1 – 10 of 757
To view the access options for this content please click here
Article
Publication date: 27 July 2021

Shahnawaz Anwer, Heng Li, Maxwell Fordjour Antwi-Afari, Waleed Umer, Imran Mehmood and Arnold Yu Lok Wong

Since construction workers often need to carry various types of loads in their daily routine, they are at risk of sustaining musculoskeletal injuries. Additionally…

Abstract

Purpose

Since construction workers often need to carry various types of loads in their daily routine, they are at risk of sustaining musculoskeletal injuries. Additionally, carrying a load during walking may disturb their walking balance and lead to fall injuries among construction workers. Different load carrying techniques may also cause different extents of physical exertion. Therefore, the purpose of this paper is to examine the effects of different load-carrying techniques on gait parameters, dynamic balance, and physiological parameters in asymptomatic individuals on both stable and unstable surfaces.

Design/methodology/approach

Fifteen asymptomatic male participants (mean age: 31.5 ± 2.6 years) walked along an 8-m walkway on flat and foam surfaces with and without a load thrice using three different techniques (e.g. load carriage on the head, on the dominant shoulder, and in both hands). Temporal gait parameters (e.g. gait speed, cadence, and double support time), gait symmetry (e.g. step time, stance time, and swing time symmetry), and dynamic balance parameters [e.g. anteroposterior and mediolateral center of pressure (CoP) displacement, and CoP velocity] were evaluated. Additionally, the heart rate (HR) and electrodermal activity (EDA) was assessed to estimate physiological parameters.

Findings

The gait speed was significantly higher when the load was carried in both hands compared to other techniques (Hand load, 1.02 ms vs Head load, 0.82 ms vs Shoulder load, 0.78 ms). Stride frequency was significantly decreased during load carrying on the head than the load in both hands (46.5 vs 51.7 strides/m). Step, stance, and swing time symmetry were significantly poorer during load carrying on the shoulder than the load in both hands (Step time symmetry ration, 1.10 vs 1.04; Stance time symmetry ratio, 1.11 vs 1.05; Swing time symmetry ratio, 1.11 vs 1.04). The anteroposterior (Shoulder load, 17.47 mm vs Head load, 21.10 mm vs Hand load, −5.10 mm) and mediolateral CoP displacements (Shoulder load, −0.57 mm vs Head load, −1.53 mm vs Hand load, −3.37 ms) significantly increased during load carrying on the shoulder or head compared to a load in both hands. The HR (Head load, 85.2 beats/m vs Shoulder load, 77.5 beats/m vs No load, 69.5 beats/m) and EDA (Hand load, 14.0 µS vs Head load, 14.3 µS vs Shoulder load, 14.1 µS vs No load, 9.0 µS) were significantly larger during load carrying than no load.

Research limitations/implications

The findings suggest that carrying loads in both hands yields better gait symmetry and dynamic balance than carrying loads on the dominant shoulder or head. Construction managers/instructors should recommend construction workers to carry loads in both hands to improve their gait symmetry and dynamic balance and to lower their risk of falls.

Practical implications

The potential changes in gait and balance parameters during various load carrying methods will aid the assessment of fall risk in construction workers during loaded walking. Wearable insole sensors that monitor gait and balance in real-time would enable safety managers to identify workers who are at risk of falling during load carriage due to various reasons (e.g. physical exertion, improper carrying techniques, fatigue). Such technology can also empower them to take the necessary steps to prevent falls.

Originality/value

This is the first study to use wearable insole sensors and a photoplethysmography device to assess the impacts of various load carrying approaches on gait parameters, dynamic balance, and physiological measures (i.e. HR and EDA) while walking on stable and unstable terrains.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

To view the access options for this content please click here
Article
Publication date: 26 May 2021

Sachin Negi, Shiru Sharma and Neeraj Sharma

The purpose of this paper is to present gait analysis for five different terrains: level ground, ramp ascent, ramp descent, stair ascent and stair descent.

Abstract

Purpose

The purpose of this paper is to present gait analysis for five different terrains: level ground, ramp ascent, ramp descent, stair ascent and stair descent.

Design/methodology/approach

Gait analysis has been carried out using a combination of the following sensors: force-sensitive resistor (FSR) sensors fabricated in foot insole to sense foot pressure, a gyroscopic sensor to detect the angular velocity of the shank and MyoWare electromyographic muscle sensors to detect muscle’s activities. All these sensors were integrated around the Arduino nano controller board for signal acquisition and conditioning purposes. In the present scheme, the muscle activities were obtained from the tibialis anterior and medial gastrocnemius muscles using electromyography (EMG) electrodes, and the acquired EMG signals were correlated with the simultaneously attained signals from the FSR and gyroscope sensors. The nRF24L01+ transceivers were used to transfer the acquired data wirelessly to the computer for further analysis. For the acquisition of sensor data, a Python-based graphical user interface has been designed to analyze and display the processed data. In the present paper, the authors got motivated to design and develop a reliable real-time gait phase detection technique that can be used later in designing a control scheme for the powered ankle-foot prosthesis.

Findings

The effectiveness of the gait phase detection was obtained in an open environment. Both off-line and real-time gait events and gait phase detections were accomplished for the FSR and gyroscopic sensors. Both sensors showed their usefulness for detecting the gait events in real-time, i.e. within 10 ms. The heuristic rules and a zero-crossing based-algorithm for the shank angular rate correctly identified all the gait events for the locomotion in all five terrains.

Practical implications

This study leads to an understanding of human gait analysis for different types of terrains. A real-time standalone system has been designed and realized, which may find application in the design and development of ankle-foot prosthesis having real-time control feature for the above five terrains.

Originality/value

The noise-free data from three sensors were collected in the same time frame from both legs using a wireless sensor network between two transmitters and a single receiver. Unlike the data collection using a treadmill in a laboratory environment, this setup is useful for gait analysis in an open environment for different terrains.

To view the access options for this content please click here
Article
Publication date: 6 January 2021

Gogineni Krishna Chaitanya and Krovi Raja Sekhar

The existing authentication procedures (pin, pattern, password) are not very secure. Therefore, the Gait pattern authentication scheme is introduced to verify the own…

Abstract

Purpose

The existing authentication procedures (pin, pattern, password) are not very secure. Therefore, the Gait pattern authentication scheme is introduced to verify the own user. The current research proposes a running Gaussian grey wolf boosting (RGGWB) model to recognize the owner.

Design/methodology/approach

The biometrics system plays an important role in smartphones in securing confidential data stored in them. Moreover, the authentication schemes such as passwords and patterns are widely used in smartphones.

Findings

To validate this research model, the unauthenticated user's Gait was trained and tested simultaneously with owner gaits. Furthermore, if the gait matches, the smartphone unlocks automatically; otherwise, it rejects it.

Originality/value

Finally, the effectiveness of the proposed model is proved by attaining better accuracy and less error rate.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

To view the access options for this content please click here
Article
Publication date: 15 September 2020

Maxwell Fordjour Antwi-Afari, Heng Li, JoonOh Seo, Shahnawaz Anwer, Sitsofe Kwame Yevu and Zezhou Wu

Construction workers are frequently exposed to safety hazards on sites. Wearable sensing systems (e.g. wearable inertial measurement units (WIMUs), wearable insole…

Abstract

Purpose

Construction workers are frequently exposed to safety hazards on sites. Wearable sensing systems (e.g. wearable inertial measurement units (WIMUs), wearable insole pressure system (WIPS)) have been used to collect workers' gait patterns for distinguishing safety hazards. However, the performance of measuring WIPS-based gait parameters for identifying safety hazards as compared to a reference system (i.e. WIMUs) has not been studied. Therefore, this study examined the validity and reliability of measuring WIPS-based gait parameters as compared to WIMU-based gait parameters for distinguishing safety hazards in construction.

Design/methodology/approach

Five fall-risk events were conducted in a laboratory setting, and the performance of the proposed approach was assessed by calculating the mean difference (MD), mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE) and intraclass correlation coefficient (ICC) of five gait parameters.

Findings

Comparable results of MD, MAE, MAPE and RMSE were found between WIPS-based gait parameters and the reference system. Furthermore, all measured gait parameters had validity (ICC = 0.751) and test-retest reliability (ICC = 0.910) closer to 1, indicating a good performance of measuring WIPS-based gait parameters for distinguishing safety hazards.

Research limitations/implications

Overall, this study supports the relevance of developing a WIPS as a noninvasive wearable sensing system for identifying safety hazards on construction sites, thus highlighting the usefulness of its applications for construction safety research.

Originality/value

This is the first study to examine the performance of a wearable insole pressure system for identifying safety hazards in construction.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 6
Type: Research Article
ISSN: 0969-9988

Keywords

To view the access options for this content please click here
Article
Publication date: 18 March 2020

Zijie Niu, Aiwen Zhan and Yongjie Cui

The purpose of this study is to test a chassis robot on rugged road cargo handling.

Abstract

Purpose

The purpose of this study is to test a chassis robot on rugged road cargo handling.

Design/methodology/approach

Attitude solution of D-H series robot gyroscope speed and acceleration sensor.

Findings

In identical experimental environments, hexapodal robots experience smaller deviations when using a four-footed propulsive gait from a typical three-footed gait for forward motion; for the same distance but at different speeds, the deviation basically keeps itself within the same range when the robot advances forward with four-foot propulsive gait; because the foot slide in the three-footed gait sometimes experiences frictions, the robot exhibits a large gap in directional deviations in different courses during motion; for motion using a four-footed propulsive gait, there are minor directional deviations of hexapodal robots resulting from experimental errors, which can be reduced through optimizing mechanical structures.

Originality/value

Planning different gaits can solve problems existing in some typical gaits. This article has put forward a gait planning method for hexapodal robots moving forward with diverse gaits as a redundant multifreedom structure. Subsequent research can combine a multiparallel-legged structure to analyze kinematics, optimize the robot’s mechanical structure and carry out in-depth research of hexapod robot gaits.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 16 October 2018

Zhong Wei, Guangming Song, Huiyu Sun, Qien Qi, Yuan Gao and Guifang Qiao

This paper aims to study the turning strategies for the bounding quadruped robot with an active spine and explore the significant role of the spine in the turning locomotion.

Abstract

Purpose

This paper aims to study the turning strategies for the bounding quadruped robot with an active spine and explore the significant role of the spine in the turning locomotion.

Design/methodology/approach

Firstly, the bounding gait combining the pitch motion of the spine with the leg motion is presented. In this gait, the spine moves in phase with the front legs. All the joints of the legs and spine are controlled by cosine signals to simplify the control, and the initial position and oscillation amplitude of the joints can be tuned. To verify the effectiveness of the proposed gait, the spine joints are set with different initial positions and oscillation amplitudes, and the initial position and oscillation amplitude of the leg joints are tuned to make the virtual model do the best locomotion in terms of the speed and stability in the simulation. The control signals are also used to control a real robot called Transleg. Then, three different turning strategies are proposed, including driving the left and right legs with different strides, swaying the spine in the yaw direction and combining the above two methods. Finally, these strategies are tested on the real robot.

Findings

The stable bounding locomotion can be achieved using the proposed gait. With the spine motion, the speed of the bounding locomotion is increased; the turning radius is reduced; and the angular velocity is increased.

Originality/value

A simple and flexible planning of the bounding gait and three turning strategies for the bounding quadruped robot are proposed. The effectiveness of the proposed bounding gait, along with the beneficial effect of the spine motion in the yaw direction on the turning locomotion is demonstrated with the computer simulations and robot experiments. This will be instructive for the designing and actuating of the other quadruped robots.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 7 August 2017

Du-Xin Liu, Xinyu Wu, Wenbin Du, Can Wang, Chunjie Chen and Tiantian Xu

The purpose of this paper is to model and predict suitable gait trajectories of lower-limb exoskeleton for wearer during rehabilitation walking. Lower-limb exoskeleton is…

Abstract

Purpose

The purpose of this paper is to model and predict suitable gait trajectories of lower-limb exoskeleton for wearer during rehabilitation walking. Lower-limb exoskeleton is widely used for assisting walk in rehabilitation field. One key problem for exoskeleton control is to model and predict suitable gait trajectories for wearer.

Design/methodology/approach

In this paper, the authors propose a Deep Spatial-Temporal Model (DSTM) for generating knee joint trajectory of lower-limb exoskeleton, which first leverages Long-Short Term Memory framework to learn the inherent spatial-temporal correlations of gait features.

Findings

With DSTM, the pathological knee joint trajectories can be predicted based on subject’s other joints. The energy expenditure is adopted for verifying the effectiveness of new recovery gait pattern by monitoring dynamic heart rate. The experimental results demonstrate that the subjects have less energy expenditure in new recovery gait pattern than in others’ normal gait patterns, which also means the new recovery gait is more suitable for subject.

Originality/value

Long-Short Term Memory framework is first used for modeling rehabilitation gait, and the deep spatial–temporal relationships between joints of gait data can obtained successfully.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 2 March 2012

Rafael R. Torrealba, José Cappelletto, Leonardo Fermín, G. Fernández‐López and Juan C. Grieco

The purpose of this paper is to generate a virtual knee angle reference to be followed by a knee prosthesis control, using an adaptive central pattern generator (CPG)…

Abstract

Purpose

The purpose of this paper is to generate a virtual knee angle reference to be followed by a knee prosthesis control, using an adaptive central pattern generator (CPG). Also, to study the feasibility of this approach to implement a continuous control strategy on the prosthesis.

Design/methodology/approach

A CPG based on amplitude controlled phase oscillators (ACPOs) to track the current percentage of gait cycle on the prosthesis is proposed. Then, the virtual knee angle reference is generated along gait cycle, by interpolation with the corresponding angle of a sound knee. The structure and coupling of the CPG, as well as the control strategy are presented.

Findings

The coupling of the CPG with real gait on the prosthesis was proven, regardless of gait speed. Also, it was found that the maximum knee angle reached during walking is proportional to gait speed. Finally, generation of virtual knee angle reference to be followed by a prosthesis is demonstrated.

Research limitations/implications

As only one event detected along gait cycle was used to update the CPG phase, the response to gait speed changes might be slow. Updating the CPG with more events remains for a future work.

Practical implications

The coupling of the CPG with real gait on the prosthesis results in a continuous gait cycle tracker, useful for any control strategy to be applied.

Originality/value

It is the first time a bio‐inspired concept as CPGs is applied to the prosthetic field. This could mean the beginning of a new era of cybernetic prostheses, which reproduce the lost limb and also the control functions of it.

To view the access options for this content please click here
Article
Publication date: 26 November 2019

Canjun Yang, Hansong Wang, Qihang Zhu, Xiangzhi Liu, Wei Yang, Zhangyi Ma and Qianxiao Wei

Lower extremity exoskeletons have drawn much attention recently due to their potential ability to help the stroke and spinal cord injury patients to regain the ability of…

Abstract

Purpose

Lower extremity exoskeletons have drawn much attention recently due to their potential ability to help the stroke and spinal cord injury patients to regain the ability of walking. However, the balance of the human-exoskeleton system (HES) remains a big challenge. Usually, patients use crutches to keep balance when they wear exoskeleton. However, the balance depends greatly on the patient's balance ability and will be inevitably poor occasionally, which often causes the landing in advance of HES. The purpose of this paper is to propose a real-time stepping gait trajectory planning method based on the hip height variation of the swing leg to solve the problem.

Design/methodology/approach

The hip height of the swing leg was analyzed and measured. The simulation with MATLAB and the experimental test with the prototype of the proposed gait were conducted to verify its feasibility.

Findings

With the proposed method, HES can achieve successful step even when the balance kept by crutches is poor.

Research limitations/implications

Instead of actively avoiding the poor balance due to the instability caused by gravity, the method just modifies the stepping gait passively to avoid the landing in advance when the poor balance appears. In addition, it may not work well when the balance is too poor. Moreover, the proposed gait is just used in the initial stage of rehabilitation training. Besides, the step length of the gait must be limited for comfort.

Originality/value

A real-time stepping gait trajectory planning method based on the hip height variation of the swing leg is first proposed and its feasibility to avoid the landing in advance when the balance kept by the crutches is poor has been preliminary verified.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 18 January 2013

Zhelong Wang, Sen Qiu, Zhongkai Cao and Ming Jiang

Due to the complex mechanism during walking, human gait takes plenty of information reflecting human motion. The method of quantitative measurement of gait makes a…

Abstract

Purpose

Due to the complex mechanism during walking, human gait takes plenty of information reflecting human motion. The method of quantitative measurement of gait makes a profound influence in many fields, such as clinical medicine, biped robot control strategy and so on. The purpose of this paper is to present a gait analysis system based on inertial measurement unit (IMU) and combined with body sensor network (BSN).

Design/methodology/approach

The authors placed two wireless inertial nodes on the left and right ankles, so that the acceleration and angular velocity could be obtained from both sides at the same time. By using the kinematical model of the human gait, many methods such as time series analysis, pattern recognition and numerical analysis, are introduced to fuse the inertial data and estimate the sagittal gait parameters.

Findings

The gait parameters evaluation gains a practical precision, especially in the gait phase detection and the process of how the two feet cooperate with each other has been analyzed to learn about the mechanism of biped walking.

Research limitations/implications

The gait analysis procedure is off line, so that the system ensures sampling at a high rate.

Originality/value

This gait analysis system can be utilized to measure quantitative gait parameters. Further, the coordination of dual gait pattern is presented. Last but not least, the system can also be put into capturing and analyzing the motion of other parts of the body.

Details

Sensor Review, vol. 33 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 757