Search results

1 – 10 of 673
To view the access options for this content please click here
Article
Publication date: 25 January 2013

Sifeng Liu, Yingjie Yang, Ying Cao and Naiming Xie

The purpose of this paper is to review systematically the research of grey relation analysis (GRA) models.

Abstract

Purpose

The purpose of this paper is to review systematically the research of grey relation analysis (GRA) models.

Design/methodology/approach

Three different approaches, the springboard to build a GRA model, the angle of view in modelling, and the dimension of objects, are analysed, respectively.

Findings

The GRA models developed from the models based on relation coefficients of each point in the sequences in early days to the generalized GRA models based on integral or overall perspective. It evolved from the GRA models which measure similarity based on nearness, into the models which consider similarity and nearness, respectively. The objects of the research advanced from the analysis of relationship among curves to that among curved surfaces, and further to the analysis of relationship in three‐dimensional space and even the relationship among super surfaces in n‐dimensional space.

Originality/value

The further research on GRA models is proposed. One is about the property of GRA model. An in‐depth knowledge about the properties of GRA model will help people to understand its function, applicable area and requirements for modelling. The other one is about the extension of research object system. The object to be analysed should be extended from the common sequence of real numbers to grey numbers, vectors, matrices, and even multi‐dimensional matrices, etc.

Content available
Article
Publication date: 14 August 2017

Mohammad Sadegh Pakkar

This paper aims to apply an integrated data envelopment analysis (DEA) and analytic hierarchy process (AHP) approach to a multi-hierarchy grey relational analysis (GRA

Abstract

Purpose

This paper aims to apply an integrated data envelopment analysis (DEA) and analytic hierarchy process (AHP) approach to a multi-hierarchy grey relational analysis (GRA) model. Consistent with the most real-life applications, the authors focus on a two-level hierarchy in which the attributes of similar characteristics can be grouped into categories. Nevertheless, the proposed approach can be easily extended to a three-level hierarchy in which attributes might also belong to different sub-categories and further be linked to categories.

Design/methodology/approach

The procedure of incorporating the DEA and AHP methods in a two-level GRA may be broken down into a series of steps. The first three steps are under the heading of attributes and the latter three steps are under the heading of categories as follows: computing the grey relational coefficients of attributes for each alternative using the basic GRA model which further provides the required (output) data for an additive DEA model; computing the priority weights of attributes and categories using the AHP method which provides a priori information on the adjustments of attributes and categories in additive DEA models; computing the grey relational grades of attributes in each category for alternatives using an additive DEA model; converting the grey relational grades of attributes to the grey relational coefficients of categories; computing the grey relational grades of categories for alternatives using an additive DEA model; computing the dissimilarity grades of categories for the tied alternatives using an additive DEA exclusion model.

Findings

The proposed approach provides a more reasonable and encompassing measure of performance in a hierarchy GRA, based on which the overall ranking position of alternatives is obtained. A case study of a wastewater treatment technology selection verifies the effectiveness of this approach.

Originality/value

This research is a step forward to overcome the current shortcomings in a hierarchy GRA by extracting the benefits from both the objective and subjective weighting methods.

Details

PSU Research Review, vol. 1 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

To view the access options for this content please click here
Article
Publication date: 29 July 2014

Xiaoning Li, Xinbo Liao, Xuerui Tan and Haijing Wang

The purpose of this paper is to evaluate resource configuration and service ability in hospital on public private partnership (PPP) model (Chaonan Minsheng Hospital of…

Abstract

Purpose

The purpose of this paper is to evaluate resource configuration and service ability in hospital on public private partnership (PPP) model (Chaonan Minsheng Hospital of Guangdong Province), supplying decision-making reference for participants of hospital on PPP model.

Design/methodology/approach

Four model of grey relational analysis (GRA) (Deng's correlation degree, grey absolute correlation degree, grey relative correlation degree and grey comprehensive correlation degree) are applied to evaluate resource configuration and service ability, a total of 11 indicators of hospital on PPP model public hospital and private hospital from 2007 to 2011.

Findings

The paper finds that different GRA models have different results when the paper applied them to evaluate resource configuration and service ability in hospital on PPP model. More than 60 per cent indicators of resource configuration (total six indicators) and service ability (total six indicators) are assessed as “hospital on PPP model ≻ public hospital” or “hospital on PPP model≻ private hospital” from three models of Deng's correlation degree, grey absolute correlation degree and grey comprehensive correlation degree.

Practical implications

Evaluation of resource configuration and service ability for hospital on PPP model with GRA makes results quantified objective and provides reference for decision making and management. GRA makes the comparison of resource configuration and service ability between hospital on PPP model and other model hospitals becoming possible.

Originality/value

The shortcoming for data analysis method of “large sample” is overcome and data analysis method of “small sample” is realized by using GRA, which broaden the method of evaluating hospital on PPP model.

Details

Grey Systems: Theory and Application, vol. 4 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

To view the access options for this content please click here
Article
Publication date: 20 June 2019

Souleymane Diba and Naiming Xie

The purpose of this paper is to evaluate, analyse and select the best suppliers for Satrec Vitalait Milk Company, operating in Senegal, based on criteria obtained from…

Abstract

Purpose

The purpose of this paper is to evaluate, analyse and select the best suppliers for Satrec Vitalait Milk Company, operating in Senegal, based on criteria obtained from economic, environmental and social dimensions of sustainable supply chain management, through the application of Deng’s grey relational analysis (GRA) model, absolute GRA model (ADGRA) and a novel second synthetic GRA (SSGRA) model, combined with one decision making under the uncertainty-based model, namely, the Hurwicz criteria.

Design/methodology/approach

The research adopts a new synthetic GRA model and highlights its reliability on small sample gathered from four senior experts of the company who administered a total number of 28 specialists operating in four departments of the company, through the employment of a self-administered questionnaire designed based on criteria identified from the literature that were refined via a Q-sort model.

Findings

The outcomes of the research methodology designated that all the selected five suppliers present a degree of attaining sustainability due to the fact that supplying unprocessed milk does not require the use of polluting methods for stocking and transportation. The undertaken study specifies that all the socio-environmental criteria play a crucial role in shaping the sustainability level of Satrec Vitalait’s suppliers and demonstrates the accuracy of the results obtained through the second synthetic degree of grey relation analysis for ranking the suppliers. Supplier 2 was found to be the best supplier for the company and, as result, a model for other suppliers to mimic.

Research limitations/implications

Future researchers can replicate the GRA-based supply chain model proposed in the current study in different environments especially in the context of green supply chain. Also, in future the SSGRA model, while using the bidirectional ADGRA instead of the conventional ADGRA, should also be tested, especially when the data sequences associated with different supply chain parameters have inconsistent directions. Also, comparative analysis of SSGRA-based results with that of modern statistical methods like structural equation modelling can also be used for future explorations. Furthermore, the current study is built upon the data associated with the Satrec Vitalait Milk Company (Senegal); therefore, the findings should be generalised with caution.

Originality/value

The study can be seen as a first-stepping stone for gauging and selecting the best sustainable supplier for Satrec Vitalait using grey system theory. For purpose of attaining the research goal, the SSGRA was exploited as an innovative experimental approach to estimate relationships between criteria with regard to the sustainability level of the company’s suppliers. Under this scope, relationships between criteria themselves and their goal were depicted by Deng’s degree of GRA and AGRA, respectively. The research is innovative by means of the framework of its methodology and data analysis.

Details

Grey Systems: Theory and Application, vol. 9 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

To view the access options for this content please click here
Article
Publication date: 6 April 2020

Zheng-Xin Wang, Ji-Min Wu, Chao-Jun Zhou and Qin Li

Seasonal fluctuation interference often affects the relational analysis of economic time series. The main purpose of this paper is to propose a new grey relational model

Abstract

Purpose

Seasonal fluctuation interference often affects the relational analysis of economic time series. The main purpose of this paper is to propose a new grey relational model for relational analysis of seasonal time series and apply it to identify and eliminate the influence of seasonal fluctuation of retail sales of consumer goods in China.

Design/methodology/approach

First, the whole quarterly time series is divided into four groups by data grouping method. Each group only contains the time series data in the same quarter. Then, the new series of four-quarters are used to establish the grey correlation model and calculate its correlation coefficient. Finally, the correlation degree of factors in each group of data was calculated and sorted to determine its importance.

Findings

The data grouping method can effectively reflect the correlation between time series in different quarters and eliminate the influence of seasonal fluctuation.

Practical implications

In this paper, the main factors influencing the quarterly fluctuations of retail sales of consumer goods in China are explored by using the grouped grey correlation model. The results show that the main factors are different from quarter to quarter: in the first quarter, the main factors are money supply, tax and per capita disposable income of rural residents. In the second quarter are money supply, fiscal expenditure and tax. In the third quarter are money supply, fiscal expenditure and per capita disposable income of rural residents. In the fourth quarter are money supply, fiscal expenditure and tax.

Originality/value

This paper successfully realizes the application of grey relational model in quarterly time series and extends the applicable scope of grey relational model.

Details

Grey Systems: Theory and Application, vol. 10 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Content available
Article
Publication date: 2 September 2016

Mohammad Sadegh Pakkar

This paper aims to propose an integration of the analytic hierarchy process (AHP) and data envelopment analysis (DEA) methods in a multiattribute grey relational analysis …

Abstract

Purpose

This paper aims to propose an integration of the analytic hierarchy process (AHP) and data envelopment analysis (DEA) methods in a multiattribute grey relational analysis (GRA) methodology in which the attribute weights are completely unknown and the attribute values take the form of fuzzy numbers.

Design/methodology/approach

This research has been organized to proceed along the following steps: computing the grey relational coefficients for alternatives with respect to each attribute using a fuzzy GRA methodology. Grey relational coefficients provide the required (output) data for additive DEA models; computing the priority weights of attributes using the AHP method to impose weight bounds on attribute weights in additive DEA models; computing grey relational grades using a pair of additive DEA models to assess the performance of each alternative from the optimistic and pessimistic perspectives; and combining the optimistic and pessimistic grey relational grades using a compromise grade to assess the overall performance of each alternative.

Findings

The proposed approach provides a more reasonable and encompassing measure of performance, based on which the overall ranking position of alternatives is obtained. An illustrated example of a nuclear waste dump site selection is used to highlight the usefulness of the proposed approach.

Originality/value

This research is a step forward to overcome the current shortcomings in the weighting schemes of attributes in a fuzzy multiattribute GRA methodology.

To view the access options for this content please click here
Article
Publication date: 23 September 2019

Erdal Aydemir and Yusuf Sahin

The purpose of this paper is to investigate the relative influences of technical and functional quality levels of service quality and patient satisfaction. In this…

Abstract

Purpose

The purpose of this paper is to investigate the relative influences of technical and functional quality levels of service quality and patient satisfaction. In this context, the healthcare service quality and the factors affecting customer satisfaction were evaluated using the grey relational analysis (GRA) method.

Design/methodology/approach

This is a survey-based study which involves 15 patients in a dialysis center, so the GRA is applied to clarify the uncertainty on service quality level with a limited number of patients without any statistical distribution. In order to reveal whether service quality and customer satisfaction are two different structures, a GRA model is built with ten different quality factors.

Findings

Results show that each quality factor has a different effect on the quality of service. Another important finding is that service quality and customer satisfaction are different structures for customers.

Practical implications

The results enable healthcare managers to understand the importance of patient care and the importance of service quality if they want to facilitate their use of their expectations in related factors.

Originality/value

The study is the first in terms of the application of GRA models in a private health institution operating in Turkey. Successful implementation of the GRA method allows a reasonable decision to be made with a limited number of data at hand. It is considered that the method can be used successfully in other health institutions in the Turkish Health System.

Details

Grey Systems: Theory and Application, vol. 9 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

To view the access options for this content please click here
Article
Publication date: 12 October 2015

Ching-Chiang Yeh

Despite the growing importance of online word-of-mouth (WOM) with regard to television (TV) ratings, it is usually excluded from early prediction models. The purpose of…

Abstract

Purpose

Despite the growing importance of online word-of-mouth (WOM) with regard to television (TV) ratings, it is usually excluded from early prediction models. The purpose of this paper is to investigate the role of online WOM in TV ratings predictions, focussing on whether the incorporation of online WOM could improve predictions of TV ratings, and extracts meaningful rules for decision-making.

Design/methodology/approach

The author uses online WOM as a potential predictive variable in the TV ratings prediction model. The author matches a list of programs based on TV ratings for the movie channel with internet user reviews and TV ratings information from Yahoo! Movies (YM) and XYZ Company. The data set includes 71 movies, for which the data were analyzed with a hybrid model.

Findings

Grey relational analysis shows that online WOM is a useful ex ante determinant of TV ratings. As a predictive variable, it plays an essential role in enhancing TV ratings predictions. The experimental results also indicate that the proposed model surpasses other listed methods in terms of both accuracy and reduction of variables, while the proposed procedure yields a set of easily understandable decision rules that facilitate the interpretation of TV ratings information.

Practical implications

This paper identifies critical predictors of TV ratings and suggests that online WOM messages are a credible source. A hybrid model is developed to illustrate an intelligent prediction system for TV ratings.

Originality/value

The study demonstrates the effectiveness of online WOM and its impact on TV ratings. It offers an intelligent prediction system for TV ratings with practical implications for managers within the TV industry.

Details

Online Information Review, vol. 39 no. 6
Type: Research Article
ISSN: 1468-4527

Keywords

Content available
Article
Publication date: 12 November 2020

Jyotdeep Singh, Parnika Tyagi, Girish Kumar and Saurabh Agrawal

The objective of the study is to develop a methodology to strategically rank store locations using criteria such as population, store site characteristics, economic…

Abstract

Purpose

The objective of the study is to develop a methodology to strategically rank store locations using criteria such as population, store site characteristics, economic considerations, competition and so on to select the most optimal retail convenience store location.

Design/methodology/approach

A case of National Capital Region, India, for a 24-h convenience store was considered for the study and the major criteria that affect the performance of a convenience store are identified, such as population characteristics, economic criteria, competition, consumer accessibility, store size, total cost, site attractiveness and security. Fuzzy AHP is utilized to find the weightage for each criteria and a combination of fuzzy TOPSIS and grey relational analysis (GRA) is applied to rank the alternative using these criteria weight. Further, results obtained are compared with results from fuzzy TOPSIS and fuzzy VIKOR methods. Sensitivity analysis is also performed for ensuring the robustness of the framework.

Findings

It is observed that outcomes do not change under various settling coefficient values, demonstrating that the methodology is very robust. The developed framework will be quite useful to diverse retailers looking to expand and generate substantial profits.

Research limitations/implications

A large sample size of number of locations encourages generalization of results. Strategic ranking of the selected locations is carried out on a few selected criteria. The study was limited by the designated geographical area.

Originality/value

The study contributes to the few available articles on convenience store selection using combination of fuzzy AHP, fuzzy TOPSIS and GRA for a developing country.

Details

Modern Supply Chain Research and Applications, vol. 2 no. 4
Type: Research Article
ISSN: 2631-3871

Keywords

To view the access options for this content please click here
Article
Publication date: 18 September 2019

Tawiah Kwatekwei Quartey-Papafio, Sifeng Liu and Sara Javed

The rise in malaria deaths discloses a decline of global malaria eradication that shows that control measures and fund distribution have missed its right of way…

Abstract

Purpose

The rise in malaria deaths discloses a decline of global malaria eradication that shows that control measures and fund distribution have missed its right of way. Therefore, the purpose of this paper is to study and evaluate the impact and control of malaria on the independent states of the Sub-Saharan African (SSA) region over the time period of 2010–2017 using Deng’s Grey incidence analysis, absolute degree GIA and second synthetic degree GIA model.

Design/methodology/approach

The purposive data sampling is a secondary data from World Developmental Indicators indicating the incidence of new malaria cases (per 1,000 population at risk) for 45 independent states in SSA. GIA models were applied on array sequences into a single relational grade for ranking to be obtained and analyzed to evaluate trend over a predicted period.

Findings

Grey relational analysis classifies West Africa as the highly infectious region of malaria incidence having Burkina Faso, Sierra Leone, Ghana, Benin, Liberia and Gambia suffering severely. Also, results indicate Southern Africa to be the least of all affected in the African belt that includes Eswatini, Namibia, Botswana, South Africa and Mozambique. But, predictions revealed that the infection rate is expected to fall in West Africa, whereas the least vulnerable countries will experience a rise in malaria incidence through to the next ten years. Therefore, this study draws the attention of all stakeholders and interest groups to adopt effective policies to fight malaria.

Originality/value

The study is a pioneer to unravel the most vulnerable countries in the SSA region as far as the incidence of new malaria cases is a concern through the use of second synthetic GIA model. The outcome of the study is substantial to direct research funds to control and eliminate malaria.

Details

Grey Systems: Theory and Application, vol. 9 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 10 of 673