Search results

1 – 10 of 399
Article
Publication date: 29 September 2023

Asmae El Jaouhari, Jabir Arif, Ashutosh Samadhiya, Anil Kumar and Jose Arturo Garza-Reyes

Over the next decade, humanity is going to face big environmental problems, and considering these serious issues, businesses are adopting environmentally responsible practices. To…

Abstract

Purpose

Over the next decade, humanity is going to face big environmental problems, and considering these serious issues, businesses are adopting environmentally responsible practices. To put forward specific measures to achieve a more prosperous environmental future, this study aims to develop an environment-based perspective framework by integrating the Internet of Things (IoT) technology into a sustainable automotive supply chain (SASC).

Design/methodology/approach

The study presents a conceptual environmental framework – based on 29 factors constituting four stakeholders' rectifications – that holistically assess the SASC operations as part of the ReSOLVE model utilizing IoT. Then, experts from the SASC, IoT and sustainability areas participated in two rigorous rounds of a Delphi study to validate the framework.

Findings

The results indicate that the conceptual environmental framework proposed would help companies enhance the connectivity between major IoT tools in SASC, which would help develop congruent strategies for inducing sustainable growth.

Originality/value

This study adds value to existing knowledge on SASC sustainability and digitalization in the context where the SASC is under enormous pressure, competitiveness and increased variability.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 28 February 2023

Chenglong Li, Hongxiu Li and Shaoxiong Fu

To cope with the COVID-19 pandemic, contact tracing mobile apps (CTMAs) have been developed to trace contact among infected individuals and alert people at risk of infection. To…

Abstract

Purpose

To cope with the COVID-19 pandemic, contact tracing mobile apps (CTMAs) have been developed to trace contact among infected individuals and alert people at risk of infection. To disrupt virus transmission until the majority of the population has been vaccinated, achieving the herd immunity threshold, CTMA continuance usage is essential in managing the COVID-19 pandemic. This study seeks to examine what motivates individuals to continue using CTMAs.

Design/methodology/approach

Following the coping theory, this study proposes a research model to examine CTMA continuance usage, conceptualizing opportunity appraisals (perceived usefulness and perceived distress relief), threat appraisals (privacy concerns) and secondary appraisals (perceived response efficacy) as the predictors of individuals' CTMA continuance usage during the pandemic. In the United States, an online survey was administered to 551 respondents.

Findings

The results revealed that perceived usefulness and response efficacy motivate CTMA continuance usage, while privacy concerns do not.

Originality/value

This study enriches the understanding of CTMA continuance usage during a public health crisis, and it offers practical recommendations for authorities.

Details

Industrial Management & Data Systems, vol. 123 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 2 May 2023

Hang Guo, Xin Chen, Min Yu, Marcin Uradziński and Liang Cheng

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor…

Abstract

Purpose

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor flight positioning.

Design/methodology/approach

The presented system was built on Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and LiDAR-Lite devices. Based on this, one can obtain the aircraft's current attitude and the position vector relative to the target and control the attitudes and positions of the UAV to reach the specified target positions. While building a UAV positioning model relative to the target for indoor positioning scenarios under limited Global Navigation Satellite Systems (GNSS), the system detects the environment through the NVIDIA Jetson TX2 (Transmit Data) peripheral sensor, obtains the current attitude and the position vector of the UAV, packs the data in the format and delivers it to the flight controller. Then the flight controller controls the UAV by calculating the posture to reach the specified target position.

Findings

The authors used two systems in the experiment. The first is the proposed UAV, and the other is the Vicon system, our reference system for comparison purposes. Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Originality/value

Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 25 September 2023

Rafal Perz, Kacper Wronowski, Roman Domanski and Igor Dąbrowski

Observation of the animal world is an important component of nature surveys. It provides a number of different information concerning aspects such as population sizes, migration…

Abstract

Purpose

Observation of the animal world is an important component of nature surveys. It provides a number of different information concerning aspects such as population sizes, migration directions, feeding sites and many other data. The paper below presents the results from the flights of an unmanned aerial vehicle (UAV) aimed at detecting animals in their natural environment.

Design/methodology/approach

The drone used in the research was equipped with RGB and thermal infrared (TIR) cameras. Both cameras, which were mounted on the UAV, were used to take pictures showing the concentration of animals (deer). The overview flights were carried out in the villages of Podlaskie Voivodeship: Szerokie Laki, Bialousy and Sloja. Research flights were made in Bialousy and Sloja. A concentration of deer was photographed during research flights in Sloja. A Durango unmanned platform, equipped with a thermal imaging camera and a Canon RGB camera, was used for research flights. The pictures taken during the flights were used to create orthomaps. A multicopter, equipped with a GoPro camera, was used for overview flights to film the flight locations. A flight control station was also used, consisting of a laptop with MissionPlanner software.

Findings

Analysis of the collected images has indicated that environmental, organisational and technical factors influence the quality of the information. Sophisticated observation precision is ensured by the use of high-resolution RGB and TIR cameras. A proper platform for the cameras is an UAV provided with advanced positioning systems, which makes it possible to create high-quality orthomaps of the area. When observing animals, the time of day (temperature contrast), year season (leaf ascent) or flight parameters is important.

Originality/value

The paper introduces the conclusions of the research flights, pointing out useful information for animal observation using UAVs.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 October 2022

Thomas Danel, Zoubeir Lafhaj, Anand Puppala, Samer BuHamdan, Sophie Lienard and Philippe Richard

The crane plays an essential role in modern construction sites as it supports numerous operations and activities on-site. Additionally, the crane produces a big amount of data…

243

Abstract

Purpose

The crane plays an essential role in modern construction sites as it supports numerous operations and activities on-site. Additionally, the crane produces a big amount of data that, if analyzed, could significantly affect productivity, progress monitoring and decision-making in construction projects. This paper aims to show the usability of crane data in tracking the progress of activities on-site.

Design/methodology/approach

This paper presents a pattern-based recognition method to detect concrete pouring activities on any concrete-based construction sites. A case study is presented to assess the methodology with a real-life example.

Findings

The analysis of the data helped build a theoretical pattern for concrete pouring activities and detect the different phases and progress of these activities. Accordingly, the data become useable to track progress and identify problems in concrete pouring activities.

Research limitations/implications

The paper presents an example for construction practitioners and researcher about a practical and easy way to analyze the big data that comes from cranes and how it is used in tracking projects' progress. The current study focuses only on concrete pouring activities; future studies can include other types of activities and can utilize the data with other building methods to improve construction productivity.

Practical implications

The proposed approach is supposed to be simultaneously efficient in terms of concrete pouring detection as well as cost-effective. Construction practitioners could track concrete activities using an already-embedded monitoring device.

Originality/value

While several studies in the literature targeted the optimization of crane operations and of mitigating hazards through automation and sensing, the opportunity of using cranes as progress trackers is yet to be fully exploited.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 September 2022

Neeraj Yadav, Neda Sadeghi and Julian Kang

Tactile communication that relies on the human sense of touch replicated using vibration motors is increasingly being explored for seamless communication on construction jobsite…

Abstract

Purpose

Tactile communication that relies on the human sense of touch replicated using vibration motors is increasingly being explored for seamless communication on construction jobsite. However, the technological efficacy cannot secure the users’ acceptability of the tactile communication devices. This study aims to assess the factors affecting the wearability of such a portable tactile device based on the responses from practicing professionals.

Design/methodology/approach

The investigation adapted a three-step phenomenological interviewing approach to seek feedback from construction personnel in Texas, the USA, regarding the viability of wearable tactile communication. The interviewees expressed various opinions about the on-body placement upon exposure to a portable tactile feedback prototype developed for this study, which was used to derive inferences regarding the factors affecting its on-field acceptability.

Findings

All the participants of the round-table study (11 out of 11) considered tactile feedback as a viable mode of communication on construction jobsite. Seven professionals supported the integration of a tactile device with the hard hat, whereas the rest preferred tactile eyeglasses. Weatherability, rechargeability, traceability, safety and social receptivity were identified as the major factors affecting the on-body placement of the wearable tactile communication device.

Originality/value

This paper presents a roadmap to gain construction industry opinion on the factors that can affect the on-body placement of a wearable tactile communication device. The five aforementioned factors impacting tactile communication acceptability were used to evaluate 10 potential on-body placements. The findings have implications for research and development of wearable tactile devices and the subsequent acceptability of such a device on the jobsite.

Article
Publication date: 9 June 2023

Hamdi Ercan and Hamdi Ulucan

The Global Positioning System (GPS) is crucial for determining the positions of quadrotors, enabling safe flight and maintaining stability against environmental conditions. This…

Abstract

Purpose

The Global Positioning System (GPS) is crucial for determining the positions of quadrotors, enabling safe flight and maintaining stability against environmental conditions. This study aims to investigate the effect of wind on the GPS of quadrotors experimentally.

Design/methodology/approach

This experimental study was conducted using an F450 frame, 980 kV motors and a Pixhawk flight controller to manage the quadrotor’s flight. To investigate the effects of wind on the quadrotor’s GPS during flight, a Pixhawk 4 Holybro flight controller was used. The experimental tests were performed on a predetermined route at different wind speeds.

Findings

Analysis of the data obtained from the flight tests showed that GPS signals were more affected as the wind speed increased. The percentage of GPS jamming levels reached 18% at high wind speeds.

Practical implications

Positioning services will be even more critical for quadrotors, which are expected to be used more frequently in public areas. This study is expected to be a reference for GPS-related research.

Originality/value

Winds pose a significant threat to the safe flight of quadrotors in many ways. This study experimentally investigates the effects of wind on the GPSs of quadrotors and to what extent it affects them at different wind speeds under real weather conditions. The obtained data shows that wind has a significant impact on GPS jamming.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 June 2023

Ahmet Esat Süzer and Hakan Oktal

The main aim of this study is to elaborately examine the error correction technology for global navigation satellite system (GNSS) navigation messages and to draw a conceptual…

Abstract

Purpose

The main aim of this study is to elaborately examine the error correction technology for global navigation satellite system (GNSS) navigation messages and to draw a conceptual decision support framework related to the modernization of the GNSS and other systems.

Design/methodology/approach

The extensive simulation model developed in Matrix Laboratory (MATLAB) is used to evaluate the performance of forward error correction (FEC) codes such as Hamming, Bose–Chaudhuri–Hocquenghem, convolutional, turbo, low-density parity check (LDPC) and polar codes under different levels of noise.

Findings

The performance and robustness of the aforementioned algorithms are compared based on the bit length, complexity and execution time of the GNSS navigation message. In terms of bit error rate, LDPC coding exhibits more ability in the robustness of the navigation message, while polar code gives better results according to the execution time.

Practical implications

In view of future new GNSS signals and message design, the findings of this paper may provide significant insight into navigation message modernization and design as an important part of GNSS modernization.

Originality/value

To the best of the authors’ knowledge, this is the first study that conducts a direct comparison of various FEC algorithms on GNSS navigation message performance against noise, taking into consideration turbo and newly developed polar codes.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 January 2024

Roberto Giosa

This study aims to investigate how institutional and organisational factors affect case management of patients with mental disorders by GPs in Italy and Spain. The paper…

Abstract

Purpose

This study aims to investigate how institutional and organisational factors affect case management of patients with mental disorders by GPs in Italy and Spain. The paper highlights the importance of improving the effectiveness of primary care to ensure easy access to mental health services, which is crucial in responding to the increasing incidence of mental disorders and preventing negative outcomes.

Design/methodology/approach

This article details a qualitative research study that examines the management of patients with mental disorders by general practitioners (GPs) in Italy and Spain, using cross-national comparison and in-depth interviews with GPs as research methods.

Findings

The study revealed that Italian self-employed GPs have more scheduling autonomy than Spanish Health Centre GPs. Both face high work pressure and resource scarcity, highlighting the need for targeted training. The COVID-19 pandemic led to a rise in phone consultations.

Originality/value

This study provides novel insights into mental health management by examining the case management of patients with mental disorders by GPs in Italy and Spain, with a focus on the impact of institutional and organisational factors. The cross-national comparison and in-depth interviews enhance the originality of the study, offering a nuanced understanding of the constraints faced by GPs in their work context. Furthermore, the comparison of the similar primary care frameworks of Italy and Spain may offer insight into their evolution.

Details

International Journal of Sociology and Social Policy, vol. 44 no. 3/4
Type: Research Article
ISSN: 0144-333X

Keywords

Article
Publication date: 30 December 2022

Lillian Fok, Yun-Chen Morgan, Susan Zee and Valerie E. Mock

This study aims to examine the direct and indirect effects of organizational culture (OC) and total quality management practices (TQMPs) on the relationship between green…

Abstract

Purpose

This study aims to examine the direct and indirect effects of organizational culture (OC) and total quality management practices (TQMPs) on the relationship between green practices (GPs) and sustainability performance (SP) by using structural equation modeling (SEM) analysis.

Design/methodology/approach

This study proposed a conceptual research model of the relationships and formulated six hypotheses. This study used a structured questionnaire based on previous studies to collect relationship data to test these hypotheses, and 441 full-time managers from various US businesses responded. The complete and valid survey responses were then tested against the hypotheses using IBM SPSS Statistics and SEM-AMOS.

Findings

Results supported the relationships proposed in the research model. They indicated that a strong supporting OC and TQMPs might improve positive SP and GPs. Additionally, the more managers are aware of their companies' GPs, the more likely they will feel positive about the organization's SP.

Research limitations/implications

A larger sample size to ensure statistically minimum representation in several major industries would better validate the findings and help identify significant differences in industry-specific OCs, TQMPs, GPs and SPs. Similarly, ensuring a varied geographical representation (both within the USA and internationally) would help determine if the findings vary according to the respondent's location. Furthermore, collecting the data during Year 1 of the COVID-19 pandemic may have skewed the results. Thus, once the working environment has been normalized, the survey should be repeated to determine if the findings are valid post-pandemic.

Practical implications

The findings of this study provide important strategic guidance for managers who work to balance the implementation of corporate GPs and the triple bottom line dimensions of SP. For practitioners, the results showed that companies could accomplish both profitability and sustainability if they are willing to continuously pay attention to environmental issues and strategically invest in cost-efficient and eco-friendly initiatives.

Originality/value

To the best of the authors’ knowledge, this research is one of the first to explore how OC and TQMPs, directly and indirectly, affect the relationship between GPs and the triple bottom line dimensions of SP. These results imply that OC and TQMPs have a significant indirect impact on the relationship between GPs and the SP dimensions.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of 399