Search results

1 – 10 of 46
Article
Publication date: 29 September 2021

Swetha Parvatha Reddy Chandrasekhara, Mohan G. Kabadi and Srivinay

This study has mainly aimed to compare and contrast two completely different image processing algorithms that are very adaptive for detecting prostate cancer using wearable…

Abstract

Purpose

This study has mainly aimed to compare and contrast two completely different image processing algorithms that are very adaptive for detecting prostate cancer using wearable Internet of Things (IoT) devices. Cancer in these modern times is still considered as one of the most dreaded disease, which is continuously pestering the mankind over a past few decades. According to Indian Council of Medical Research, India alone registers about 11.5 lakh cancer related cases every year and closely up to 8 lakh people die with cancer related issues each year. Earlier the incidence of prostate cancer was commonly seen in men aged above 60 years, but a recent study has revealed that this type of cancer has been on rise even in men between the age groups of 35 and 60 years as well. These findings make it even more necessary to prioritize the research on diagnosing the prostate cancer at an early stage, so that the patients can be cured and can lead a normal life.

Design/methodology/approach

The research focuses on two types of feature extraction algorithms, namely, scale invariant feature transform (SIFT) and gray level co-occurrence matrix (GLCM) that are commonly used in medical image processing, in an attempt to discover and improve the gap present in the potential detection of prostate cancer in medical IoT. Later the results obtained by these two strategies are classified separately using a machine learning based classification model called multi-class support vector machine (SVM). Owing to the advantage of better tissue discrimination and contrast resolution, magnetic resonance imaging images have been considered for this study. The classification results obtained for both the SIFT as well as GLCM methods are then compared to check, which feature extraction strategy provides the most accurate results for diagnosing the prostate cancer.

Findings

The potential of both the models has been evaluated in terms of three aspects, namely, accuracy, sensitivity and specificity. Each model’s result was checked against diversified ranges of training and test data set. It was found that the SIFT-multiclass SVM model achieved a highest performance rate of 99.9451% accuracy, 100% sensitivity and 99% specificity at 40:60 ratio of the training and testing data set.

Originality/value

The SIFT-multi SVM versus GLCM-multi SVM based comparison has been introduced for the first time to perceive the best model to be used for the accurate diagnosis of prostate cancer. The performance of the classification for each of the feature extraction strategies is enumerated in terms of accuracy, sensitivity and specificity.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 May 2009

Yassine Ben Salem and Salem Nasri

This paper proposes the recognition and classification of three mean woven fabrics, twill, satin and plain. The proposed classifier is based on the texture analysis of woven…

Abstract

This paper proposes the recognition and classification of three mean woven fabrics, twill, satin and plain. The proposed classifier is based on the texture analysis of woven fabric images for the recognition.

In the pattern recognition phase, three methods are tested and compared: Gabor wavelet, Local Binary Pattern operators (LBP) and gray-level co-occurrence matrices (GLCM).

Taking advantage of the difference between the woven fabric textures, we adopt a technique which is based on the texture of the images in the pattern recognition phase. For the classification phase we used a support vector machine (SVM) which we have proven is a suitable classifier for this type of problem

The experimental results show that some of the studied methods are more compatible with this classification problem than others. Although it is the oldest method, GLCM always remains accurate (97.2 %).The fusion of the Gabor wavelet and GLCM give the best result (98%), but the GLCM have the better running time.

Details

Research Journal of Textile and Apparel, vol. 13 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 28 November 2018

Ning Zhang, Ruru Pan, Lei Wang, Shanshan Wang, Jun Xiang and Weidong Gao

The purpose of this paper is to propose a novel method using support vector machine (SVM) classifiers for objective seam pucker evaluation. Features are extracted using wavelet…

Abstract

Purpose

The purpose of this paper is to propose a novel method using support vector machine (SVM) classifiers for objective seam pucker evaluation. Features are extracted using wavelet analysis and gray-level co-occurrence matrix (GLCM), and the samples are evaluated using SVM classifiers. The study aims to solve the problem of inappropriate parameters and large required samples in objective seam pucker evaluation.

Design/methodology/approach

Initially, seam pucker image was captured, and Edge detection and Hough transform were utilized to normalize the seam position and orientation. After cropping the image, the intensity was adjusted to the same identical level through histogram specification. Then, the standard deviations of the horizontal image and diagonal image, reconstructed using wavelet decomposition and reconstruction, were calculated based on parameter optimization. Meanwhile, GLCM was extracted from the restructured horizontal detail image, then the contrast and correlation of GLCM were calculated. Finally, these four features were imported to SVM classifiers based on genetic algorithm for evaluation.

Findings

The four extracted features reflected linear relationships among five grades. The experimental results showed that the classification accuracy was 96 percent, which catches up to the performance of human vision, and resolves ambiguity and subjective of the manual evaluation.

Originality/value

There are large required samples in current research. This paper provides a novel method using finite samples, and the parameters of the methods were discussed for parameter optimization. The evaluation results can provide references for analyzing the reason of wrinkles during garment manufacturing.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 24 August 2021

Rajakumar Krishnan, Arunkumar Thangavelu, P. Prabhavathy, Devulapalli Sudheer, Deepak Putrevu and Arundhati Misra

Extracting suitable features to represent an image based on its content is a very tedious task. Especially in remote sensing we have high-resolution images with a variety of…

Abstract

Purpose

Extracting suitable features to represent an image based on its content is a very tedious task. Especially in remote sensing we have high-resolution images with a variety of objects on the Earth's surface. Mahalanobis distance metric is used to measure the similarity between query and database images. The low distance obtained image is indexed at the top as high relevant information to the query.

Design/methodology/approach

This paper aims to develop an automatic feature extraction system for remote sensing image data. Haralick texture features based on Contourlet transform are fused with statistical features extracted from the QuadTree (QT) decomposition are developed as feature set to represent the input data. The extracted features will retrieve similar images from the large image datasets using an image-based query through the web-based user interface.

Findings

The developed retrieval system performance has been analyzed using precision and recall and F1 score. The proposed feature vector gives better performance with 0.69 precision for the top 50 relevant retrieved results over other existing multiscale-based feature extraction methods.

Originality/value

The main contribution of this paper is developing a texture feature vector in a multiscale domain by combining the Haralick texture properties in the Contourlet domain and Statistical features using QT decomposition. The features required to represent the image is 207 which is very less dimension compare to other texture methods. The performance shows superior than the other state of art methods.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 9 February 2021

Yaolin Zhu, Jiayi Huang, Tong Wu and Xueqin Ren

The purpose of this paper is to select the optimal feature parameters to further improve the identification accuracy of cashmere and wool.

Abstract

Purpose

The purpose of this paper is to select the optimal feature parameters to further improve the identification accuracy of cashmere and wool.

Design/methodology/approach

To increase the accuracy, the authors put forward a method selecting optimal parameters based on the fusion of morphological feature and texture feature. The first step is to acquire the fiber diameter measured by the central axis algorithm. The second step is to acquire the optimal texture feature parameters. This step is mainly achieved by using the variance of secondary statistics of these two texture features to get four statistics and then finding the impact factors of gray level co-occurrence matrix relying on the relationship between the secondary statistic values and the pixel pitch. Finally, the five-dimensional feature vectors extracted from the sample image are fed into the fisher classifier.

Findings

The improvement of identification accuracy can be achieved by determining the optimal feature parameters and fusing two texture features. The average identification accuracy is 96.713% in this paper, which is very helpful to improve the efficiency of detector in the textile industry.

Originality/value

In this paper, a novel identification method which extracts the optimal feature parameter is proposed.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 March 2016

Rui Zhang and Binjie Xin

The purpose of this paper is introducing the image processing technology used for fabric analysis, which has the advantages of objective, digital and quick response.

Abstract

Purpose

The purpose of this paper is introducing the image processing technology used for fabric analysis, which has the advantages of objective, digital and quick response.

Design/methodology/approach

This paper briefly describes the key process and module of some typical automatic recognition systems for fabric analysis presented by previous researchers; the related methods and algorithms used for the texture and pattern identification are also introduced.

Findings

Compared with the traditional subjective method, the image processing technology method has been proved to be rapid, accurate and reliable for quality control.

Originality/value

The future trends and limitations in the field of weave pattern recognition for woven fabrics have been summarized at the end of this paper.

Details

Research Journal of Textile and Apparel, vol. 20 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 August 2019

Neda Tadi Bani and Shervan Fekri-Ershad

Large amount of data are stored in image format. Image retrieval from bulk databases has become a hot research topic. An alternative method for efficient image retrieval is…

Abstract

Purpose

Large amount of data are stored in image format. Image retrieval from bulk databases has become a hot research topic. An alternative method for efficient image retrieval is proposed based on a combination of texture and colour information. The main purpose of this paper is to propose a new content based image retrieval approach using combination of color and texture information in spatial and transform domains jointly.

Design/methodology/approach

Various methods are provided for image retrieval, which try to extract the image contents based on texture, colour and shape. The proposed image retrieval method extracts global and local texture and colour information in two spatial and frequency domains. In this way, image is filtered by Gaussian filter, then co-occurrence matrices are made in different directions and the statistical features are extracted. The purpose of this phase is to extract noise-resistant local textures. Then the quantised histogram is produced to extract global colour information in the spatial domain. Also, Gabor filter banks are used to extract local texture features in the frequency domain. After concatenating the extracted features and using the normalised Euclidean criterion, retrieval is performed.

Findings

The performance of the proposed method is evaluated based on the precision, recall and run time measures on the Simplicity database. It is compared with many efficient methods of this field. The comparison results showed that the proposed method provides higher precision than many existing methods.

Originality/value

The comparison results showed that the proposed method provides higher precision than many existing methods. Rotation invariant, scale invariant and low sensitivity to noise are some advantages of the proposed method. The run time of the proposed method is within the usual time frame of algorithms in this domain, which indicates that the proposed method can be used online.

Details

The Electronic Library , vol. 37 no. 4
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 25 February 2014

A. Ghosh, T. Guha and R. Bhar

The purpose of this paper is to give an approach for categorization of diverse textile designs using their textural features as extracted from their gray images by means of…

Abstract

Purpose

The purpose of this paper is to give an approach for categorization of diverse textile designs using their textural features as extracted from their gray images by means of multi-class least-square support vector machines (LS-SVM).

Design/methodology/approach

In this work, the authors endeavor to devise a pattern recognition system based on LS-SVM which performs a multi-class categorization of three basic woven designs namely plain, twill and sateen after analyzing their features.

Findings

The result establishes that LS-SVM is able to classify the fabric design with a reasonable degree of accuracy and it outperforms the standard SVM.

Originality/value

The algorithmic simplicity of LS-SVM resulting from replacement of inequality constraints by equality ones and ability of handling noisy data by accommodating an error variable in its algorithm make it eminently suitable for textile pattern recognition. This paper offers a maiden application of LS-SVM in textile pattern recognition.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 May 2020

Zhijie Wen, Qikun Zhao and Lining Tong

The purpose of this paper is to present a novel method for minor fabric defects detection.

Abstract

Purpose

The purpose of this paper is to present a novel method for minor fabric defects detection.

Design/methodology/approach

This paper proposes a PETM-CNN algorithm. PETM-CNN is designed based on self-similar estimation algorithm and Convolutional Neural Network. The PE (Patches Extractor) algorithm extracts patches that are possible to be defective patches to preprocess the fabric image. Then a TM-CNN (Triplet Metric CNN) method is designed to predict labels of the patches and the final label of the image. The TM-CNN can perform better than normal CNN.

Findings

This algorithm is superior to other algorithms on the data set of fabric images with minor defects. The proposed method achieves accurate classification of fabric images whether it has minor defects or not. The experimental results show that the approach is effective.

Originality/value

Traditional fabric defects detection is not effective as minor defects detection, so this paper develops a method of minor fabric images classification based on self-similar estimation and CNN. This paper offers the first investigation of minor fabric defects.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 May 2020

Rajeshwari S. Patil and Nagashettappa Biradar

Breast cancer is one of the most common malignant tumors in women, which badly have an effect on women's physical and psychological health and even danger to life. Nowadays…

Abstract

Purpose

Breast cancer is one of the most common malignant tumors in women, which badly have an effect on women's physical and psychological health and even danger to life. Nowadays, mammography is considered as a fundamental criterion for medical practitioners to recognize breast cancer. Though, due to the intricate formation of mammogram images, it is reasonably hard for practitioners to spot breast cancer features.

Design/methodology/approach

Breast cancer is one of the most common malignant tumors in women, which badly have an effect on women's physical and psychological health and even danger to life. Nowadays, mammography is considered as a fundamental criterion for medical practitioners to recognize breast cancer. Though, due to the intricate formation of mammogram images, it is reasonably hard for practitioners to spot breast cancer features.

Findings

The performance analysis was done for both segmentation and classification. From the analysis, the accuracy of the proposed IAP-CSA-based fuzzy was 41.9% improved than the fuzzy classifier, 2.80% improved than PSO, WOA, and CSA, and 2.32% improved than GWO-based fuzzy classifiers. Additionally, the accuracy of the developed IAP-CSA-fuzzy was 9.54% better than NN, 35.8% better than SVM, and 41.9% better than the existing fuzzy classifier. Hence, it is concluded that the implemented breast cancer detection model was efficient in determining the normal, benign and malignant images.

Originality/value

This paper adopts the latest Improved Awareness Probability-based Crow Search Algorithm (IAP-CSA)-based Region growing and fuzzy classifier for enhancing the breast cancer detection of mammogram images, and this is the first work that utilizes this method.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 46