Search results

1 – 10 of 30
To view the access options for this content please click here
Article
Publication date: 4 September 2019

K. Suneetha, S.M. Ibrahim and G.V. Ramana Reddy

The purpose of this paper is to address the combined effects of thermal radiation and chemical reaction on steady MHD mixed convective heat and mass transfer flow past a…

Abstract

Purpose

The purpose of this paper is to address the combined effects of thermal radiation and chemical reaction on steady MHD mixed convective heat and mass transfer flow past a vertical surface under the influence of Joule and viscous dissipation.

Design/methodology/approach

The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using perturbation technique.

Findings

With the help of graphs, the effects of the various important parameters entering into the problem on the dimensionless velocity, dimensionless temperature and dimensionless concentration fields within the boundary layer are discussed. The authors noticed that the velocity increases with an increase in the porosity parameter. An increase in the Prandtl number Pr, decreases the velocity and the temperature field. An increase in the radiation parameter, decreases the velocity and the temperature field. Also the effects of the pertinent parameters on the skin-friction coefficient and rates of heat and mass transfer in terms of the Nusselt and Sherwood numbers are presented numerically in tabular form.

Originality/value

To the best of the authors’ knowledge, recent this work has not been finished by any other researchers.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 17 August 2018

K. Suneetha, S.M. Ibrahim and G.V. Ramana Reddy

The purpose of this paper is to investigate the steady 2D buoyancy effects on MHD flow over a permeable stretching sheet through porous medium in the presence of suction/injection.

Abstract

Purpose

The purpose of this paper is to investigate the steady 2D buoyancy effects on MHD flow over a permeable stretching sheet through porous medium in the presence of suction/injection.

Design/methodology/approach

Similarity transformations are employed to transform the governing partial differential equations into ordinary differential equations. The transformed equations are then solved numerically by a shooting technique.

Findings

The working fluid is examined for several sundry parameters graphically and in tabular form. It is observed that with an increase in magnetic field and permeability of porous parameter, velocity profile decreases while temperature and concentration enhances. Stretching sheet parameter reduces velocity, temperature and concentration, whereas it increases skin friction factor, Nusselt number and Sherwood number.

Originality/value

Till now no numerical studies are reported on the effects of heat source and thermal radiation on MHD flow over a permeable stretching sheet embedded in porous medium in the presence of chemical reaction.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 21 September 2018

Anantha Kumar K., Sugunamma V., Sandeep N. and Ramana Reddy J.V.

The purpose of this paper is to scrutinize the heat and mass transfer attributes of three-dimensional bio convective flow of nanofluid across a slendering surface with…

Abstract

Purpose

The purpose of this paper is to scrutinize the heat and mass transfer attributes of three-dimensional bio convective flow of nanofluid across a slendering surface with slip effects. The analysis is carried out subject to irregular heat sink/source, thermophoresis and Brownian motion of nanoparticles.

Design/methodology/approach

At first, proper transmutations are pondered to metamorphose the basic flow equations as ODEs. The solution of these ODEs is procured by the consecutive application of Shooting and Runge-Kutta fourth order numerical procedures.

Findings

The usual flow fields along with density of motile microorganisms for sundry physical parameters are divulged via plots and scrutinized. Further, the authors analyzed the impact of same parameters on skin friction, heat and mass transfer coefficients and presented in tables. It is discovered that the variable heat sink/source parameters play a decisive role in nature of the heat and mass transfer rates. The density of motile microorganisms will improve if we add Al-Cu alloy particles in regular fluids instead of Al particles solely. A change in thermophoresis and Brownian motion parameters dominates heat and mass transfer performance.

Originality/value

To the best of the knowledge, no author made an attempt to investigate the flow of nanofluids over a variable thickness surface with bio-convection, Brownian motion and slip effects.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 29 June 2021

Venkateshwar Reddy Pathapalli, Meenakshi Reddy Reddigari, Eswara Kumar Anna, P. Srinivasa Rao and D V. Ramana Reddy

Metal matrix composites (MMC) has been a section which gives an overview of composite materials and owing to those exceptional physical and mechanical properties…

Abstract

Purpose

Metal matrix composites (MMC) has been a section which gives an overview of composite materials and owing to those exceptional physical and mechanical properties, particulate-reinforced aluminum MMCs have gained increasing interest in particular engineering applications. Owing to the toughness and abrasive quality of reinforcement components such as silicon carbide (SiC) and titanium carbide (TiC), such materials are categorized as difficult materials for machining. The work aims to develop the model for evaluating the machinability of the materials via the response surface technique by machining three distinct types of hybrid MMCs.

Design/methodology/approach

The combined effects of three machining parameters, namely “cutting speed” (s), “feed rate” (f) and “depth of cut” (d), together with three separate composite materials, were evaluated with the help of three performance characteristics, i.e. material removal rate (MRR), cutting force (CF) and surface roughness (SR). Response surface methodology and analysis of variance (ANOVA) both were initially used for analyzing the machining parameters results.

Findings

The contours were developed to observe the combined process parameters along with their correlations. The process variables were concurrently configured using grey relational analysis (GRA) and the composite desirability methodology. Both the GRA and composite desirability approach obtained similar results.

Practical implications

The results obtained in the present paper will be helpful for decision-makers in manufacturing industries, who work on metal cutting area especially composites, to select the suitable solution by implementing the Grey Taguchi and modeling techniques.

Originality/value

The originality of this research is to identify the suitability of process parameters combination based on the obtained research results. The optimization of machining parameters in turning of hybrid metal matrix composites is carried out with two different methods such as Grey Taguchi and composite desirability approach.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 2 August 2018

Ramadevi B., Sugunamma V., Anantha Kumar K. and Ramana Reddy J.V.

The purpose of this paper is to focus on MHD unsteady flow of Carreau fluid over a variable thickness melting surface in the presence of chemical reaction and non-uniform…

Abstract

Purpose

The purpose of this paper is to focus on MHD unsteady flow of Carreau fluid over a variable thickness melting surface in the presence of chemical reaction and non-uniform heat sink/source.

Design/methodology/approach

The flow governing partial differential equations are transformed into ordinary ones with the help of similarity transformations. The set of ODEs are solved by a shooting technique together with the R.K.–Fehlberg method. Further, the graphs are depicted to scrutinize the velocity, concentration and temperature fields of the Carreau fluid flow. The numerical values of friction factor, heat and mass transfer rates are tabulated.

Findings

The results are presented for both Newtonian and non-Newtonian fluid flow cases. The authors conclude that the nature of three typical fields and the physical quantities are alike in both cases. An increase in melting parameter slows down the velocity field and enhances the temperature and concentration fields. But an opposite outcome is noticed with thermal relaxation parameter. Also the elevating values of thermal relaxation parameter/ wall thickness parameter/Prandtl number inflate the mass and heat transfer rates.

Originality/value

This is a new research article in the field of heat and mass transfer in fluid flows. Cattaneo–Christov heat flux model is used. The surface of the flow is assumed to be melting.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 21 June 2018

Anantha Kumar K., Ramana Reddy J.V., Sugunamma V. and N. Sandeep

The purpose of this paper is to propose the knowledge of thermal transport of magneto hydrodynamic non-Newtonian fluid flow over a melting sheet in the presence of…

Abstract

Purpose

The purpose of this paper is to propose the knowledge of thermal transport of magneto hydrodynamic non-Newtonian fluid flow over a melting sheet in the presence of exponential heat source.

Design/methodology/approach

The group of PDE is mutated as dimension free with the assistance of similarity transformations and these are highly nonlinear and coupled. The authors solved the coupled ODE’s with the help of fourth-order Runge–Kutta based shooting technique. The impact of dimensionless sundry parameters on three usual distributions of the flow was analyzed and bestowed graphically. Along with them friction factor, heat and mass transfer rates have been assessed and represented with the aid of table.

Findings

Results exhibited that all the flow fields (velocity, concentration and temperature) are decreasing functions of melting parameter. Also the presence of cross-diffusion highly affects the heat and mass transfer performance.

Originality/value

Present paper deals with the heat and mass transfer characteristics of magnetohydrodynamics flow of non-Newtonian fluids past a melting surface. The effect of exponential heat source is also considered. Moreover this is a new work in the field of heat transfer in non-Newtonian fluid flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 16 November 2020

Mahantesh M. Nandeppanavar, Kemparaju M.C. and N. Raveendra

This paper aims to report the investigation of over heat and mass transfer of convective Casson fluid flow over a moving vertical plate with nonlinear thermal radiation…

Abstract

Purpose

This paper aims to report the investigation of over heat and mass transfer of convective Casson fluid flow over a moving vertical plate with nonlinear thermal radiation and convective boundary conditions.

Design/methodology/approach

The main partial differential equations of the flow, heat and concentration profiles were rehabilitated to nonlinear ordinary differential equations by using an appropriate similarity transformation. The resultant nonlinear ordinary differential equations (ODEs) are solved numerically applying fourth-order Runge–Kutta shooting technique and functions of ODE45 from MATLAB.

Findings

The effect of convective heat transfer, buoyancy ratio parameter, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number over velocity, temperature and concentration profiles, equivalent to abundant somatic parameters were graphically scrutinized.

Originality/value

All the results are very promising and further there is got good agreement of results when compared with earlier published results at limiting conditions.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 8 August 2019

Jawad Raza, Fateh Mebarek-Oudina and B. Mahanthesh

The purpose of this paper is to present an exploration of multiple slips and temperature dependent thermal conductivity effects on the flow of nano Williamson fluid over a…

Abstract

Purpose

The purpose of this paper is to present an exploration of multiple slips and temperature dependent thermal conductivity effects on the flow of nano Williamson fluid over a slendering stretching plate in the presence of Joule and viscous heating aspects. The effectiveness of nanoparticles is deliberated by considering Brownian moment and thermophoresis slip mechanisms. The effects of magnetism and radiative heat are also deployed.

Design/methodology/approach

The governing partial differential equations are non-dimensionalized and reduced to multi-degree ordinary differential equations via suitable similarity variables. The subsequent non-linear problem treated for numerical results. To measure the amount of increase/decrease in skin friction coefficient, Nusselt number and Sherwood number, the slope of linear regression line through the data points are calculated. Statistical approach is implemented to analyze the heat transfer rate.

Findings

The results show that temperature distribution across the flow decreases with thermal conductivity parameter. The maximum friction factor is ascertained at stronger magnetic field.

Originality/value

In the current paper, the magneto-nano Williamson fluid flow inspired by a stretching sheet of variable thickness is examined numerically. The rationale of the present study is to generalize the studies of Mebarek-Oudina and Makinde (2018) and Williamson (1929).

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 25 June 2019

Saeed Dinarvand, Mohammadreza Nademi Rostami, Rassoul Dinarvand and Ioan Pop

This paper aims to simulate the steady laminar mixed convection incompressible viscous and electrically conducting hybrid nanofluid (CuO-Cu/blood) flow near the plane…

Abstract

Purpose

This paper aims to simulate the steady laminar mixed convection incompressible viscous and electrically conducting hybrid nanofluid (CuO-Cu/blood) flow near the plane stagnation-point over a horizontal porous stretching sheet along with an external magnetic field and induced magnetic field effects that can be applicable in the biomedical fields like the flow dynamics of the micro-circulatory system and especially in drug delivery.

Design/methodology/approach

The basic partial differential equations (PDEs) are altered to a set of dimensionless ordinary differential equations (ODEs) with the help of suitable similarity variables which are then solved numerically using bvp4c scheme from MATLAB. Inasmuch as validation results have shown a good agreement with previous reports, the present novel mass-based algorithm can be used in this problem with great confidence. Governing parameters are both nanoparticle masses, base fluid mass, empirical shape factor of both nanoparticles, suction/injection parameter, magnetic parameter, reciprocal magnetic Prandtl number, Prandtl number, heat source parameter, mixed convection parameter, permeability parameter and frequency ratio. The effect of these parameters on the flow and heat transfer characteristics of the problem is discussed in detail.

Findings

It is shown that the use of CuO and Cu hybrid nanoparticles can reduce the hemodynamics effect of the capillary relative to pure blood case. Moreover, as the imposed magnetic field enhances, the velocity of the blood decreases. Besides, when the blade shapes for both nanoparticles are taken into account, the local heat transfer rate is maximum that is also compatible with experimental observations.

Originality/value

An innovative mass-based model of CuO-Cu/blood hybrid nanofluid has been applied. The novel attitude to one-phase hybrid nanofluid model corresponds to considering nanoparticles mass as well as base fluid mass to computing the solid equivalent volume fraction, the solid equivalent density and also solid equivalent specific heat.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 22 July 2021

Mahantesh M. Nandeppanavar, Kemparaju M.C. and Raveendra N.

This paper aims to find the influence of convective heat transfer, buoyancy proportions, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number on…

Abstract

Purpose

This paper aims to find the influence of convective heat transfer, buoyancy proportions, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number on velocity, temperature and concentration profiles.

Design/methodology/approach

This paper explores the heat and mass transfer of a stagnation point stream of free convective Casson fluid over a moving vertical plate with nonlinear thermal radiation and convective boundary restrictions. The governing PDEs of stream, heat and concentration profiles were reformed into an arrangement of nonlinear ODEs by using similarity transformation. This framework was then tackled numerically by applying forth-order RK shooting strategy.

Findings

Distribution of flow, velocity and temperature profiles for different values of governing parameters are analyzed.

Originality/value

The original results are depicted in terms of plots.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 30