Search results

1 – 10 of 406
Content available
Book part
Publication date: 19 February 2024

Quoc Trung Tran

Abstract

Details

Dividend Policy
Type: Book
ISBN: 978-1-83797-988-2

Article
Publication date: 20 November 2023

A.K. Abdul Hakeem, Priya S., Ganga Bhose and Sivasankaran Sivanandam

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent…

Abstract

Purpose

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent years have witnessed significant progress in optimizing these fluids for enhanced heat transfer within porous (Darcy–Forchheimer) structures, offering promising solutions for various industries seeking improved thermalmanagement and energy efficiency.

Design/methodology/approach

The first step is to transform the original partial differential equations into a system of first-order ordinary differential equations (ODEs). The fourth-order Runge–Kutta method is chosen for its accuracy in solving ODEs. The present study investigates the free convective boundary layer flow of hybrid nanofluids over a moving thin inclined needle with the slip flow brought about by inclined Lorentz force and Darcy–Forchheimer porous matrix, viscous dissipation.

Findings

It is found that slip conditions (velocity and Thermal) exist for a range of the natural convection boundary layer flow. In the hybrid nanofluid flow, which consists of Al2O3 and Fe3O4 are nanoparticles, H2OC2H6O2 (50:50) are considered as the base fluid. The consequence of the governing parameter on the momentum and temperature profile distribution is graphically depicted. The range of the variables is 1 ≤ M ≤ 4, 1 ≤ d ≤ 2.5, 1 ≤ δ ≤ 4, 1 ≤ Fr ≤ 7, 1 ≤ Kr ≤ 7 and 0.5≤λ ≤ 3.5. The Nusselt number and skin friction factors are used to calculate the numerical values of various parameters, which are displayed in Table 4. These analyses elucidate that upsurges in the value of the Fr noticeably diminish the momentum and temperature. It is investigated to see if the contemporary results are in outstanding promise with the outcomes reported in earlier works.

Practical implications

The results can be very helpful to improve the energy efficiency of thermal systems.

Social implications

The hybrid nanofluids in heat transfer have the potential to improve the energy efficiency and performance of a wide range of systems.

Originality/value

This study proposes that in the combined effects of hybrid nanofluid properties, the inclined Lorentz force, the Darcy–Forchheimer model for porous media and viscous dissipation on the boundary layer flow of a conducting fluid over a moving thin inclined needle. Assessing the potential practical applications of the hybrid nanofluids in inclined needles, this could involve areas such as biomedical engineering, drug delivery systems or microfluidic devices. In future should explore the benefits and limitations of using hybrid nanofluids in these applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 May 2023

Maria Athar, Adeel Ahmad and Yasir Khan

To explore the fusion of dust particles and of polymers in a viscous liquid is the main purpose of this article. Newtonian fluid as a base fluid is considered and the mutual…

Abstract

Purpose

To explore the fusion of dust particles and of polymers in a viscous liquid is the main purpose of this article. Newtonian fluid as a base fluid is considered and the mutual presence of polymers and dusty bodies is investigated. It discusses the steady laminar flow and heat transportation of a polymeric dusty liquid induced by a uniformly heated, penetrable and stretchable surface inside the boundary layer.

Design/methodology/approach

The mathematical system incorporates separate equations of energy and momentum for dusty bodies and for fluid. The classical Oldroyd-B model is chosen for exploring polymer presence. For the fluid phase, this model adds another stress to the conservation law of momentum. Appropriate similarity variables are introduced to transform the system of partial differential equations (PDEs) into a system of nonlinear ordinary differential equations (ODEs). The problem is solved by introducing a numerical iterative procedure which turned out to be fastly converging.

Findings

Expeditious changes inside the boundary layer cause polymers to deform. No changes outside the boundary layer are noticed on account of polymer stretching. The dependence of heat transfer rate and skin friction on the parameter of polymer concentration and Weissenberg number is analyzed and displayed graphically against interaction parameters for temperature and velocity, dust particles’ mass concentration, Eckert and Prandtl numbers. Combining effects of polymers and dust particles cause skin friction to decrease and heat transfer rate to increase. Increasing values of interaction parameter for velocity, dust particles’ mass concentration and Eckert number reduces the drag coefficient and local Nusselt number. On the other hand, the Prandtl number and interaction parameter of temperature magnify the heat flux at the wall.

Research limitations/implications

This article studies the infinite extensibility of polymers. FENE and FENE-P models can be used to investigate the polymer presence in dusty fluids in the future.

Originality/value

In this article, the authors’ aim is to study the combined presence of polymers and dusty bodies. Keeping the existing literature in view, this type of fusion is not studied yet. Polymer inclusion in a viscous dusty fluid is studied and the behavior of fluid flow and heat transportation is investigated within the boundary layer over a permeable linearly stretching sheet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 November 2023

Waqar Khan Usafzai, Ioan Pop and Cornelia Revnic

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable…

Abstract

Purpose

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable shrinking sheet in a dusty fluid with velocity slip.

Design/methodology/approach

The governing partial differential equations for the two dust particle phases are reduced to the pertinent ordinary differential equations using a similarity transformation. Closed-form analytical solutions for the reduced skin friction and reduced Nusselt number, as well as for the velocity and temperature profiles, were presented, both graphically and in tables, under specific non-dimensional physical parameters such as the suction parameter, Prandtl number, slip parameter and shrinking parameter, which are also presented in both figures and tables.

Findings

The results indicate that for the shrinking flow, the wall skin friction is higher in the dusty fluid when compared with the clear (viscous) fluid. In addition, the effect of the fluid–particle interaction parameter to the fluid phase can be seen more clearly in the shrinking flow. Furthermore, multiple (dual, upper and lower branch solutions) are found for the governing similarity equations and the upper branch solution expanded with higher values of the suction parameter. It can be confirmed that the lower branch solution is unstable.

Practical implications

In practice, the study of the stretching/shrinking flow is crucially important and useful. Both the problems of steady and unsteady flow of a dusty fluid have a wide range of possible applications in practice, such as in the centrifugal separation of particles, sedimentation and underground disposal of radioactive waste materials.

Originality/value

Even though the problem of dusty fluid has been broadly investigated, very limited results can be found for a shrinking sheet. Indeed, this paper has succeeded to obtain analytically dual solutions. The stability analysis can be performed by following many published papers on stretching/shrinking sheets. Finally, the critical values and plotting curves for obtaining single or dual solution are successfully presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2023

Syed Sohaib Zafar, Aurang Zaib, Farhan Ali, Fuad S. Alduais, Afrah Al Bossly and Anwar Saeed

The modern day has seen an increase in the prevalence of the improvement of high-performance thermal systems for the enhancement of heat transmission. Numerous studies and…

Abstract

Purpose

The modern day has seen an increase in the prevalence of the improvement of high-performance thermal systems for the enhancement of heat transmission. Numerous studies and research projects have been carried out to acquire an understanding of heat transport performance for their functional application to heat conveyance augmentation. The idea of this study is to inspect the entropy production in Darcy-Forchheimer Ree-Eyring nanofluid containing bioconvection flow toward a stretching surface is the topic of discussion in this paper. It is also important to take into account the influence of gravitational forces, double stratification, heat source–sink and thermal radiation. In light of the second rule of thermodynamics, a model of the generation of total entropy is presented.

Design/methodology/approach

Incorporating boundary layer assumptions allows one to derive the governing system of partial differential equations. The dimensional flow model is transformed into a non-dimensional representation by applying the appropriate transformations. To deal with dimensionless flow expressions, the built-in shooting method and the BVP4c code in the Matlab software are used. Graphical analysis is performed on the data to investigate the variation in velocity, temperature, concentration, motile microorganisms, Bejan number and entropy production concerning the involved parameters.

Findings

The authors have analytically assessed the impact of Darcy Forchheimer's flow of nanofluid due to a spinning disc with slip conditions and microorganisms. The modeled equations are reset into the non-dimensional form of ordinary differential equations. Which are further solved through the BVP4c approach. The results are presented in the form of tables and figures for velocity, mass, energy and motile microbe profiles. The key conclusions are: The rate of skin friction incessantly reduces with the variation of the Weissenberg number, porosity parameter and Forchheimer number. The rising values of the Prandtl number reduce the energy transmission rate while accelerating the mass transfer rate. Similarly, the effect of Nb (Brownian motion) enhances the energy and mass transfer rates. The rate of augments with the flourishing values of bioconvection Lewis and Peclet number. The factor of concentration of microorganisms is reported to have a diminishing effect on the profile. The velocity, energy and entropy generation enhance with the rising values of the Weissenberg number.

Originality/value

According to the findings of the study, a slip flow of Ree-Eyring nanofluid was observed in the presence of entropy production and heat sources/sinks. There are features when the implementations of Darcy–Forchheimer come into play. In addition to that, double stratification with chemical reaction characteristics is presented as a new feature. The flow was caused by the stretching sheet. It has been brought to people's attention that although there are some investigations accessible on the flow of Ree-Eyring nanofluid with double stratification, they are not presented. This research draws attention to a previously unexplored topic and demonstrates a successful attempt to construct a model with distinctive characteristics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 March 2022

Dania Batool, Qandeel Malik, Tila Muhammad, Adnan Umar Khan and Jonghoon Kim

Multilevel inverters play a major role in the development of high-power industrial applications. In traditional low-level inverters (e.g. 2-level), the switching frequency is…

Abstract

Purpose

Multilevel inverters play a major role in the development of high-power industrial applications. In traditional low-level inverters (e.g. 2-level), the switching frequency is restricted and the harmonic spectrum of the system is hard to meet power requirements. Similarly, high-level inverters consist of a large number of switches, complex modulation techniques and complex hardware architecture, which results in high power loss and a significant amount of harmonic distortion. Furthermore, it is a must to ensure that every switch experiences the same stress of voltage and current. The purpose of this paper is to present an inverter topology with lower conduction and switching losses via reduced number of switches and equal voltage source-sharing technique.

Design/methodology/approach

Herein, the authors present a cascaded multilevel inverter having less power switches, a simple modulation technique and an equal voltage source-sharing phenomenon implementation.

Findings

The modulation technique becomes more complex when equal voltage source-sharing is to be implemented. In this study, a novel topology for the multilevel inverter with fewer switches, novel modulation technique, equal voltage source-sharing and Inductor-Capacitor-Inductor filter implementation is demonstrated to the reduce harmonic spectrum and power losses of the proposed system.

Originality/value

The nine-level inverter design is validated using software simulations and hardware prototype testing; the power losses of the proposed inverter design are elaborated and compared with the traditional approach.

Book part
Publication date: 23 May 2023

Ramesh Chandra Das

With the growth of income at the global level, the World Bank data show that there are rising levels of income disparity across countries, groups, regions and within the…

Abstract

With the growth of income at the global level, the World Bank data show that there are rising levels of income disparity across countries, groups, regions and within the countries. This fact otherwise hints at the inter-country divergence in incomes, particularly between the developed and developing countries of the world. This chapter, therefore, attempts to examine the convergence or divergence in credit, GDP and HDI across the 10 selected countries for the period of 1990–2019 applying the neoclassical growth approach and the time series approach. The results of the exercise in line with the neoclassical theories on absolute convergence and sigma convergence show that the countries are unquestionably converging in GDP and HDI with mixed results in case of credit. The results of convergence in GDP and HDI in all the countries and their developed and developing counterparts provide a possible explanation as to why the cross countries’ income inequalities as well as world inequality in income and development are reducing over time. On the other hand, the results of the time series approach display that credit and HDI are converging in both absolute and conditional terms but the countries are converging in conditional terms only for GDP. Thus, the claims of the World Bank are not valid for the selected countries in the chapter, rather, they can be verified by taking other countries and groups into consideration.

Details

Growth and Developmental Aspects of Credit Allocation: An inquiry for Leading Countries and the Indian States
Type: Book
ISBN: 978-1-80382-612-7

Keywords

Article
Publication date: 2 January 2024

Stephan M. Wagner, M. Ramkumar, Gopal Kumar and Tobias Schoenherr

In the aftermath of disasters, humanitarian actors need to coordinate their activities based on accurate information about the disaster site, its surrounding environment, the…

Abstract

Purpose

In the aftermath of disasters, humanitarian actors need to coordinate their activities based on accurate information about the disaster site, its surrounding environment, the victims and survivors and the supply of and demand for relief supplies. In this study, the authors examine the characteristics of radio frequency identification (RFID) technology and those of disaster relief operations to achieve information visibility and actor coordination for effective and efficient humanitarian relief operations.

Design/methodology/approach

Building on the contingent resource-based view (CRBV), the authors present a model of task-technology fit (TTF) that explains how the use of RFID can improve visibility and coordination. Survey data were collected from humanitarian practitioners in India, and partial least squares (PLS) analysis was used to analyze the model.

Findings

The characteristics of both RFID technology and disaster relief operations significantly influence TTF, and TTF predicts RFID usage in disaster relief operations, providing visibility and coordination. TTF is also a mediator between the characteristics of RFID technology and disaster relief operations and between visibility and coordination.

Social implications

The many recent humanitarian disasters have demonstrated the critical importance of effective and efficient humanitarian supply chain and logistics strategies and operations in assisting disaster-affected populations. The active and appropriate use of technology, including RFID, can help make disaster response more effective and efficient.

Originality/value

Humanitarian actors value RFID technology because of its ability to improve the visibility and coordination of relief operations. This study brings a new perspective to the benefits of RFID technology and sheds light on its antecedents. The study thus expands the understanding of technology in humanitarian operations.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Book part
Publication date: 19 July 2023

Begum Sertyesilisik

Reducing income gap and enhancing welfare of people can be achieved through improved performance regarding socio-economic indicators, which can support sustainable development…

Abstract

Reducing income gap and enhancing welfare of people can be achieved through improved performance regarding socio-economic indicators, which can support sustainable development. People living in villages tend to migrate to the cities with the hope of enhancing their income. People living in cities and income gap among the people in the cities are expected to increase further. Enhanced living conditions in villages can reduce the need for this migration and increase welfare of the people in the villages. This chapter aims to examine drivers for sustainable smart villages and ways for enhancing and supporting their effectiveness in socio-economic development, in enhancing welfare and living conditions of people living in villages, and in reducing income gap between urban and rural people. This chapter investigates potential and roles of sustainable and smart villages in enhancing welfare and living conditions of people living in villages. Furthermore, this chapter emphasises the villages’ roles in sustainable development as well as importance of transformation of villages into the sustainable and smart ones and establishment of sustainable and smart villages so that convergence, social inclusion and socio-economic indicators can be supported. This chapter explains drivers for transformation of the villages into the sustainable and smart ones as well as establishment of new sustainable and smart villages. This chapter provides recommendations for sustainable and smart villages effective in contributing to sustainable and socio-economic development. This chapter can be useful to urban planners, construction industry stakeholders, policy makers and researchers.

Details

Inclusive Developments Through Socio-economic Indicators: New Theoretical and Empirical Insights
Type: Book
ISBN: 978-1-80455-554-5

Keywords

Article
Publication date: 6 October 2023

MD. Shamshuddin, Anwar Saeed, S.R. Mishra, Ramesh Katta and Mohamed R. Eid

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs…

Abstract

Purpose

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs remains comparatively uncharted territory. This work presents a distinctive contribution through the comprehensive examination of heat and mass transfer phenomena in the NF ND–Cu/H2O under the influence of an exponentially stretching velocity. Moreover, the investigation delves into the intriguing interplay of gyrotactic microorganisms and convective boundary conditions within the system.

Design/methodology/approach

Similarity transformations have been used on PDEs to convert them into dimensionless ODEs. The solution is derived by using the homotopy analysis method (HAM). The pictorial notations have been prepared for sundry flow parameters. Furthermore, some engineering quantities are calculated in terms of the density of motile microbes, Nusselt and Sherwood numbers and skin friction, which are presented in tabular form.

Findings

The mixed convection effect associated with the combined effect of the buoyancy ratio, bioconvection Rayleigh constant and the resistivity due to the magnetization property gives rise to attenuating the velocity distribution significantly in the case of hybrid nanoliquid. The parameters involved in the profile of motile microorganisms attenuate the profile significantly.

Practical implications

The current simulations have uncovered fascinating discoveries about how metallic NFs behave near a stretched surface. These insights give us valuable information about the characteristics of the boundary layer close to the surface under exponential stretching.

Originality/value

The novelty of the current investigation is the analysis of NF ND–Cu/H2O along with an exponentially stretching velocity in a system with gyrotactic microorganisms. The investigation of fluid flow at an exponentially stretching velocity using NFs is still relatively unexplored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 406