Search results

1 – 10 of 37
Article
Publication date: 1 March 2021

Viju Subramoniapillai and G. Thilagavathi

The most widely recycled plastic in the world is recycled polyethylene terephthalate (rPET). To minimize the environmental related issues associated with synthetic fibers, several…

Abstract

Purpose

The most widely recycled plastic in the world is recycled polyethylene terephthalate (rPET). To minimize the environmental related issues associated with synthetic fibers, several researchers have explored the potential use of recycled polyester fibers in developing various technical textile products. This study aims to develop needle-punched nonwoven fabrics from recycled polyester fibers and investigate its suitability in oil spill cleanup process.

Design/methodology/approach

According to Box and Behnken factorial design, 15 different needle-punched nonwoven fabrics from recycled polyester fibers were prepared by changing the parameters, namely, needle punch density, needle penetration depth and fabric areal weight. Several featured parameters such as oil sorption, oil retention, oil sorption kinetics, wettability and reusability performance were systematically elucidated.

Findings

The maximum oil sorption of recycled nonwoven polyester is found to be 24.85 g/g and 20.58 g/g for crude oil and vegetable oil, respectively. The oil retention is about 93%–96% in case of crude oil, whereas 87%–91% in case of vegetable oil. Recycled polyester nonwoven possesses good hydrophobic–oleophilic properties with static contact angle of 138° against water, whereas 0° against crude oil and vegetable oil. The reusability test results indicate that recycled polyester nonwoven fabric can be used several times because of its reusability features.

Originality/value

There is no detailed study on the oil sorption features of needle-punched nonwoven fabrics developed from recycled polyester fibers. This study is expected to help in developing fabrics for oil spill cleanups.

Details

Research Journal of Textile and Apparel, vol. 25 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 May 2022

Dat Van Truong, Song Thanh Quynh Le and Huong Mai Bui

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to…

Abstract

Purpose

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to demonstrate the process of creating an oil-absorbent web from a blend of treated kapok and polypropylene fibers.

Design/methodology/approach

Kapok fibers were separated from dried fruits, then the wax was removed with an HCl solution at different concentrations. The morphological and structural changes of these fibers were investigated using scanning electron microscopy images. The blending ratios of kapok and polypropylene fibers were 60/40, 70/30 and 80/20, respectively. The fiber blends were fed to a laboratory carding machine to form a web and then consolidated using the heat press technique. The absorption behavior of the formed web was evaluated regarding oil absorption capacity and oil retention capacity according to ASTM 726.

Findings

The results showed that the HCl concentration of 1.0% (wt%) gave the highest wax removal efficiency without damaging the kapok fibers. This study found that oil absorbency is influenced by the fiber blending ratio, web tensile strength and elongation, porosity, oil type and environmental conditions. The oil-absorbency of the web can be re-used for at least 20 cycles.

Research limitations/implications

This study only looked at three types of oils: diesel, kerosene and vegetable oils.

Practical implications

When the problem of oil spills in rivers and seas is growing and causing serious environmental and economic consequences, using physical methods to recover oil spills is the most effective solution.

Originality/value

This research adds to the possibility of using kapok fiber in the form of a web of non-woven fabric for practical purposes.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 18 April 2017

R. Rathinamoorthy and G. Thilagavathi

Odour formation in textile material is mainly based on the fibre content and also the constituent fibres’ chemical and physical structures. Polyester fibre materials are very…

Abstract

Purpose

Odour formation in textile material is mainly based on the fibre content and also the constituent fibres’ chemical and physical structures. Polyester fibre materials are very profound to form odour after being worn due to their highly oleophilic nature. The purpose of this paper is to analyse the odour formation characteristics of polyester fabric after surface modification through alkali treatment.

Design/methodology/approach

Five male participants were allowed to use the alkali-treated and untreated polyester fabrics, which were fixed in the axilla region of their vest. Subjective and objective odour analyses were performed for the worn samples. The odour was evaluated in terms of intensity rating, bacterial population (CFU/ml) and bacterial isolation.

Findings

The results showed that alkali treatment was effective in odour reduction in polyester fabric (p<0.005). The bacterial population density was also reduced significantly (p<0.005) in the alkali-treated polyester fabric compared to the untreated polyester fabric after the wear trial. The alkali treatment affected the surface structure of the polyester fabric and thus changed it from hydrophilic to hydrophobic. This was confirmed by the moisture management test results.

Originality/value

The odour formation in the polyester fabric can be controlled by simple surface modification process like alkali treatment, and thus the value of the product can be increased in the apparel sector.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 August 2021

Viju Subramoniapillai and Govindharajan Thilagavathi

In recent years, oil spill pollution has become one of the main problems of environmental pollution. Recovering oil by means of sorbent materials is a very promising approach and…

Abstract

Purpose

In recent years, oil spill pollution has become one of the main problems of environmental pollution. Recovering oil by means of sorbent materials is a very promising approach and has acquired more attention due to its high cleanup efficiency. Compared to synthetic fibrous sorbents, the use of natural fibers in oil spill cleanups offers several advantages including environmental friendliness, degradable features and cost-effectiveness. Therefore, studies on developing sorbents using natural fibers for oil spill cleanup applications have become a research hotspot.

Design/methodology/approach

This paper reviews the work conducted by several researchers in developing oil sorbents from fibers such as cattail, nettle, cotton, milkweed, kapok, populous seed fiber and Metaplexis japonica fiber. Some featured critical parameters influencing the oil sorption capacity of fibrous substrates are discussed. Oil sorption capacity and reusability performance of various fibers are also discussed. Recent developments in oil spill cleanups and test methods for oil sorbents are briefly covered.

Findings

The main parameters influencing the oil sorption capacity of sorbents are fiber morphological structure, fiber density (g/cc), wax (%), hollowness (%) and water contact angle. An extensive literature review showed that oil sorption capacity is highest for Metaplexis japonica fiber followed by populous seed fiber, kapok, milkweed, cotton, nettle and cattail fiber. After use, the sorbents can be buried under soil or they can also be burned so that they can be vanished from the surface without causing environmental-related issues.

Originality/value

This review paper aims to summarize research studies conducted related to various natural fibers for oil spill cleanups, fiber structural characteristics influencing oil sorption and recent developments in oil spill cleanups. This work will inspire future researchers with various knowledge backgrounds, particularly, from a sustainability perspective.

Details

Research Journal of Textile and Apparel, vol. 26 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 8 June 2018

Rokbi Mansour, Ati Abdelaziz and Aiche Fatima Zohra

The literature reveals there is a limited knowledge regarding the extraction of long natural fibers, in particular those extracted from leaves. This investigation aims to present…

Abstract

Purpose

The literature reveals there is a limited knowledge regarding the extraction of long natural fibers, in particular those extracted from leaves. This investigation aims to present the extraction process and the characterization of long natural cellulose fibers from doum palm leaves (Hyphaene thebaica L.), with properties suitable for polymeric composite materials and textile applications.

Design/methodology/approach

The resulting H. thebaica L. fibers were identified using Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The physical properties of the extracted fibers were measured to estimate the reliability of extraction conditions. Mechanical properties were evaluated to determine ultimate strength, Young’s modulus and strain-at-failure of the fibers of the doum leaves.

Findings

The following properties of the doum palm are listed in this paper: physical properties of doum palm fibers (H. thebaica L.), TGA, XRD of doum palm fibers, tensile properties of doum palm fibers and surface morphology of doum palm fibers.

Research limitations/implications

Like synthetic fibers, the inclusion of short or long natural fibers into the polymer matrix can increase tensile, flexural and compressive strengths of these matrixes. Compared to the short-length natural fibers, longer-length fibers provide better reinforcements and therefore accord higher performances to the composites. Long fibers can also provide exceptional opportunities to develop a new class of advanced lightweight composites and have the potential to rival glass fiber in the manufacture of composite materials, using matrix materials, such as polypropylene, epoxy and phenolic resins.

Originality/value

The following values are presented in this paper: density of doum palm fibers = 1.14-1.40 g/cm², linear density (Tex) = 33.10 ±11.5, equivalent diameter (µm) = 178.72 ± 41.7, diameter (µm) = 137.02-220.42, tensile strength (MPa) = 124.84-448.10, Young’s modulus (GPa) = 8.06-19.59, strain-at-failure (%) = 0.81-2.86.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 18 April 2017

M. Janarthanan and M. Senthil Kumar

The healthcare and hygiene textiles are gaining more importance for their eco-friendly and effective antimicrobial properties that have become essential to safeguard human beings…

Abstract

Purpose

The healthcare and hygiene textiles are gaining more importance for their eco-friendly and effective antimicrobial properties that have become essential to safeguard human beings from harmful microorganisms. The fabrics finished with chemical-based antimicrobial agents lead to environmental issues and are harmful to human beings. The paper aims to discuss these issues.

Design/methodology/approach

The present investigation is to develop a fabric with antioxidant and antimicrobial properties using the extracts of brown algae. Antimicrobial property has been imparted to the cotton fabric using microcapsules of brown seaweed extracts using the pad-dry-cure method. The presence of bioactive compounds and antioxidant activities of brown algae extracts was evaluated using gas chromatography-mass spectrometry and 2, 2-diphenyl-1-picrylhydrazyl radical scavenging technique, respectively. The total phenolic content of the seaweed extract was determined by the Folin-Ciocalteu method. The minimum bactericidal concentration and minimum inhibitory concentration methods were used to determine the antibacterial activity of the bacterial reduction percentage and parallel streak methods were used evaluate the antibacterial activity of seaweed-treated fabrics.

Findings

The methanol fraction of the treated fabric had the highest antioxidant activity (42.5+1.21 per cent), because the higher phenolic content traps the reactive oxygen species and develops the cells present in the skin. The results show that the lower inhibition (250 µg/mL) and bactericidal concentrations (1,000 µg/mL) possess higher antibacterial activity. The results also show that the treated fabric possess higher bacterial reduction of 96 per cent and higher zone of inhibition against Escherichia Coli and Staphylococcus Aureus which was about 35 mm and 40 mm. The air permeability, bending length and the wicking behaviour of the treated fabric were slightly reduced, but it has good bursting strength compared with the untreated fabric.

Originality/value

Such treated fabric is used for making wound dressing, surgical gowns, antibacterial socks and gauze bandage products in healthcare and hygiene textiles.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 May 2021

Jemal Endris and Nalankilli Govindan

The purpose of this study is to establish a suitable procedure for dyeing and multifunctional finishing on 100% cotton using extracts of eucalyptus leaves in an eco-friendly…

Abstract

Purpose

The purpose of this study is to establish a suitable procedure for dyeing and multifunctional finishing on 100% cotton using extracts of eucalyptus leaves in an eco-friendly manner.

Design/methodology/approach

Box–Behnken design of experiments and analysis of variance (ANOVA) were used to optimise the conditions of extraction, dyeing and finishing. Phytochemical analysis was performed to determine the chemical constituents of the extracts. Colour strength, fastness properties were evaluated for dyed fabric samples. The effectiveness of eucalyptus leaves extract as an insect repellent, aroma, antibacterial finishing agent, was assessed. Pre-soaking and padding method was used for the application of active essential oil on the fabric.

Findings

Essential oil extracted from Eucalyptus globulus leaves have great repellent rate for insects to the extent of 90% and aroma intensity of 72% and antibacterial effect of 100% bacterial reduction up to five washings. The use of citric acid as cross-linking agent helps increase the durability of the finish. Natural dyeing to get light yellow shade is possible with extracts made with water, possessing good fastness properties.

Research limitations/implications

Scaling up the extraction process and soaking larger quantities of fabrics in extracted essential oil solution before the pad applications are considered limitations of this study. However, smaller pieces of fabrics can conveniently be handled in this process. It has tremendous potential for practising industrially, to get yellow-shaded multifunctional finished cotton textiles.

Practical implications

Protection against insects, including mosquitoes, bacteria with additional aroma on cotton will be of great use in day-to-day life for the wearer.

Social implications

Eco-friendly, renewable sources of ingredients from the plant were used to obtain protection against pathogenic or odour-causing microorganisms using this hygiene finish with multiple end uses.

Originality/value

This original work enables conducting dyeing and multifunctional finishing together in a single stage, which otherwise takes a number of steps, consuming large quantities of water, chemicals and energy to impart similar effects on cotton.

Details

Research Journal of Textile and Apparel, vol. 25 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 September 2022

R. Rathinamoorthy and S. Raja Balasaraswathi

Synthetic textile materials are noted as one of the major contributors to microfiber pollution through laundry. Though many research works evaluated microfiber pollution, the…

Abstract

Purpose

Synthetic textile materials are noted as one of the major contributors to microfiber pollution through laundry. Though many research works evaluated microfiber pollution, the solutions provided to control microfiber shedding are meager. The existing products collect or filter the microfiber from laundry effluent and restrict the direct leaching. However, no methods were proposed to effectively reduce the shedding from the textile itself.

Design/methodology/approach

This research is aimed to analyze the influence of surface modification of polyester knitted textiles by sodium hydroxide, on microfiber shedding. Response surface methodology was adapted to optimize different treatment parameters (alkali concentration, treatment time and temperature).

Findings

The results show that the sodium hydroxide concentration and treatment time had a negative correlation with microfiber shedding reduction. Whereas, treatment temperature had a positive correlation with microfiber shedding reduction. The statistical analysis revealed that 0.4 M concentration, 90°C temperature and 24 min of treatment time was the best process condition for minimum microfiber release. The same was confirmed with a practical experiment and a significant reduction of 80.63% in microfiber shedding after alkali treatment was found.

Originality/value

Alkali treatment of different knitted polyester fabrics with various knit structures and mass per square meter showed a significant reduction in microfiber shedding. The repeated laundry performed for 20 washes with surface-modified samples showed a significant reduction in microfiber release at every wash cycle and ensured the longevity of the effect.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 June 2021

Senthil Kumar B. and Murugan T.

This paper aims to investigate on composite fabrics to develop the improved sleeping bag using trilayered textile structures. A thermal comfort analysis of fabrics is essential to…

Abstract

Purpose

This paper aims to investigate on composite fabrics to develop the improved sleeping bag using trilayered textile structures. A thermal comfort analysis of fabrics is essential to design an enhanced type of sleeping bag.

Design/methodology/approach

In this study, optimizing thermal and permeability properties of different combinations of trilayer composite fabrics was done. The inner layer was 100% wool-knitted single jersey fabric. The middle layer was polyester needle punched non-woven fabric. The outermost layer was nylon-based Core-Tex branded waterproof breathable fabric. Five variations in wool-knitted samples were developed by changing the loop length and yarn count to optimize the best possible combination. Two different polyester non-woven fabrics have been produced with the changes in bulk density. Twelve trilayer composite fabric samples have been produced, and thermal comfort properties such as thermal conductivity, thermal absorptivity, thermal resistance, air permeability and relative water vapour permeability have been analysed.

Findings

Among the 12 samples, one optimized sample has been found with the specification of 100% wool with 25 Tex yarn linear density having 4.432-mm loop length inner-layered fabric, 96 g/m2 polyester nonwoven fabric as the middle layer, and 220 g/m2 Nylon-Core tex branded outermost layer. All the functional properties of the composite fabric are significantly different with the knitted wool fabrics and polyester nonwoven fabrics, which have been confirmed by analysis of variance study.

Originality/value

This research work supports for producing sleeping bag with enhanced comfort level.

Details

Research Journal of Textile and Apparel, vol. 26 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 November 2016

Kaixuan Liu, Jianping Wang, Chun Zhu and Yan Hong

Currently, the researches on garment development and wear comfort evaluation mainly focus on the static condition type and seldom involved dynamic condition. Therefore, the…

1074

Abstract

Purpose

Currently, the researches on garment development and wear comfort evaluation mainly focus on the static condition type and seldom involved dynamic condition. Therefore, the purpose of this paper is to develop cycling clothes’ patterns and evaluate their dynamic wear comfort.

Design/methodology/approach

First, the 3D-to-2D flattening technology was applied to develop garment patterns of a cycler’s jersey T-shirt. Then, 3D animation technology was used to simulate the scene of cycling. Next, a novel pressure-measuring method was proposed to measure static and dynamic clothing pressures in a virtual environment. Finally, the collected data were used for evaluating wear comfort.

Findings

Compared to static conditions, the dynamic wear comfort noticeably improved at the front neck, side neck, upper front chest, around back neck point and front shoulder, and the front neck. Compared to static conditions, the dynamic wear comfort visibly deteriorates at the back neck, below chest, outseam, back except around back neck point and around scapula, and the around scapula area. The dynamic pressure at back neck, below front chest and shoulder fluctuate wildly throughout the whole cycling. On the contrary, the dynamic pressure at the front neck, side neck, front upper chest and at the back cause it to tend to stability during cycling.

Originality/value

The 3D virtual-reality technology was applied to simulate cycling. And a novel method was proposed to measure numerical clothing pressures for evaluating the dynamic wear comfort. The proposed method can not only quantitatively evaluate the wear comfort of cycling clothes and optimize cycling clothes’ patterns, but also can be applied to other tight garment types.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 37