Search results

1 – 10 of 18
Article
Publication date: 1 February 1999

G. Zavarise and P. Wriggers

The numerical solution of contact problems via the penalty method yields approximate satisfaction of contact constraints. The solution can be improved using augmentation…

Abstract

The numerical solution of contact problems via the penalty method yields approximate satisfaction of contact constraints. The solution can be improved using augmentation schemes. However their efficiency is strongly dependent on the value of the penalty parameter and usually results in a poor rate of convergence to the exact solution. In this paper we propose a new method to perform the augmentations. It is based on estimated values of the augmented Lagrangians. At each augmentation the converged state is used to extract some data. Such information updates a database used for the Lagrangian estimation. The prediction is primarily based on the evolution of the constraint violation with respect to the evolution of the contact forces. The proposed method is characterised by a noticeable efficiency in detecting nearly exact contact forces, and by superlinear convergence for the subsequent minimisation of the residual of constraints. Remarkably, the method is relatively insensitive to the penalty parameter. This allows a solution which fulfils the constraints very rapidly, even when using penalty values close to zero.

Details

Engineering Computations, vol. 16 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1991

G. ZAVARISE, R. VITALIANI and B. SCHREFLER

An algorithm to calculate shape function values at specific points is presented. It applies to three‐dimensional serendipity elements with variable node numbers per side…

Abstract

An algorithm to calculate shape function values at specific points is presented. It applies to three‐dimensional serendipity elements with variable node numbers per side and, as a particular case, to plane and truss elements. The procedure is shown for the two‐dimensional case using the natural orthogonal reference system of the element and is then generalized to the three‐dimensional case. The source code of the described algorithms written in Fortran 77 is included.

Details

Engineering Computations, vol. 8 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 March 2011

Michael Ertl and Manfred Kaltenbacher

The fast and flexible development of fast switching electromagnetic valves as used in modern gasoline engine demands the availability of efficient and accurate simulation…

Abstract

Purpose

The fast and flexible development of fast switching electromagnetic valves as used in modern gasoline engine demands the availability of efficient and accurate simulation tools. The purpose of this paper is to provide an enhanced computational scheme of these actuators including all relevant physical effects of magneto‐mechanical systems and including contact mechanics.

Design/methodology/approach

The finite element (FE) method is applied to efficiently solve the arising coupled system of partial differential equations describing magneto‐mechanical systems. The algorithm for contact mechanics is based on the cross‐constraint method using an energy‐ and momentum‐conserving time‐discretisation scheme. Although solving separately for the electromagnetic and mechanical system, a strong coupling is ensured within each time step by an iterative process with stopping criterion.

Findings

The numerical simulations of the full switching cycle of an electromagnetic direct injection valve, including the bouncing during the closing state, are just feasible with an enhanced and robust mechanical contact algorithm. Furthermore, the solution of the nonlinear electromagnetic and mechanical equations needs a Newton scheme with a line search scheme for the relaxation of the step size.

Originality/value

The paper provides a numerical simulation scheme based on the FE method, which includes all relevant physical effects in magneto‐mechanical systems, and which is robust even for long‐term contact periods with multitude re‐opening phases.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 February 2021

Eymen Cagatay Bilge and Hakan Yaman

Integrated project delivery (IPD) and building information modeling (BIM) has begun to be used in real estate development projects over the past decade to improve…

Abstract

Purpose

Integrated project delivery (IPD) and building information modeling (BIM) has begun to be used in real estate development projects over the past decade to improve collaboration, communication and efficiency. However, the use of BIM and IPD in projects does not always imply that the information is well used and managed. This study aims to explain how information management should be carried out in BIM and IPD projects, what activities should be managed by the information manager and which stakeholder should play this role and why?

Design/methodology/approach

This study provides a framework on the subject by conducting a comprehensive systematic review in the field of real estate development, BIM, IPD and information management. In this context, the Web of Science and Scopus databases have been systematically reviewed, n = 45 out of a total of n = 1,356 articles and additionally, the BIM documents and standards prepared by public institutions and organizations and industry reports have been examined in detail.

Findings

The framework for information management roles was established by reviewing the literature. According to this framework, information management activities of information managers are listed in the table that covers all phases of real estate development. The owner should undertake this role as it is the entity that oversees the built asset from planning to the management of that facility.

Originality/value

In terms of acquiring information management roles, there is no research on BIM and IPD projects and who will take over this role. This study desired to close this gap in the literature.

Details

Construction Innovation , vol. 21 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 28 September 2022

Wei Wang, Junping Shi, Xiaoshan Cao and Yifeng Hu

The partition of unity of the standard meshless Galerkin method is used as basis in expressing the discontinuity of the contact surface displacement, particularly by…

Abstract

Purpose

The partition of unity of the standard meshless Galerkin method is used as basis in expressing the discontinuity of the contact surface displacement, particularly by adding discontinuous terms into the displacement mode, and constructing the discontinuous meshless displacement field function. In this study the contact surface equation is aimed to derive from the improved Coulomb friction contact model.

Design/methodology/approach

In this paper based on the basic idea of meshless method, an improved moving least squares approximation function (expansion method based on out of unit division) is applied to the analysis of two-dimensional contact problems.

Findings

On the basis of this equation after discrete processing, it is combined with the discrete form of the virtual work equation with added contact conditions, and eventually transformed into a standard linear complementary problem. Moreover, it is solved by using the Lemke algorithm, and a corresponding example is provided in this research.

Originality/value

The proposed method can effectively control the mutual embedding of the contact surface, and the stress distribution that is the same as the actual situation can be obtained on the contact surface.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 June 2022

Zeyuan Zhou, Hekun Jia and Bifeng Yin

This paper aims to present a 3D static performance analysis model for the gas foil journal bearing to provide better understanding of the gas foil journal bearing and…

Abstract

Purpose

This paper aims to present a 3D static performance analysis model for the gas foil journal bearing to provide better understanding of the gas foil journal bearing and extend the development of the calculation about the static performance.

Design/methodology/approach

The foil bearing can be seen as a shell structure, and the mixed interpolation of tensorial components (MITC) element was used to build the shell model. The augmented Lagrange method was used to calculate the contact involving friction between foils and between the foil and the bearing sleeve. A displacement-controlled load scheme was used to calculate the deformation of the foils. A mapping operator was used to map the film pressure from the gas to the surface of the top foil.

Findings

This method provides high precision of calculation in the prediction of the static performance. The calculation results were compared with the experimental data, and they show good agreement. Meanwhile, the model can be applied in the prediction of the bearing performance in a broad range of working conditions.

Originality/value

This method extends the calculation of the gas foil journal bearing to a 3D scale and shows good agreement with the experimental data. Meanwhile, the present model has a good adaptability on the revolution speed and can be applied to the predictions in varied working conditions.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 July 1995

F. Lebon

This paper is the description of a new two‐grid algorithm tosolve frictional contact problems. A regularized formulation is introducedand the discretized problem is solved…

Abstract

This paper is the description of a new two‐grid algorithm to solve frictional contact problems. A regularized formulation is introduced and the discretized problem is solved using an internal non linear two‐grid technique coupled with a diagonal fixed point algorithm. Mathematical background is given, and superconvergence is obtained.

Details

Engineering Computations, vol. 12 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 February 2021

Waseem Arif, Hakim Naceur, Sajjad Miran, Nicolas Leconte and Eric Markiewicz

The purpose of this study is to develop an elasto-plastic multi-material shell model by which finite element analysis of laser welded joints is carried out at the…

Abstract

Purpose

The purpose of this study is to develop an elasto-plastic multi-material shell model by which finite element analysis of laser welded joints is carried out at the interface of the heat-affected zone and base material.

Design/methodology/approach

The multi-material shell model is implemented on the simple cantilever and double cantilever welded plates to examine the efficiency of the developed model.

Findings

By reducing the computational time approximately 20 times with the developed model, the results obtained in the form of von Mises stress and equivalent plastic strain are found in good agreement as compared with the reference solid model.

Originality/value

The accurate and fast prediction of the stresses and strains in the laser welded joints, and the developed multi-material model is helpful to simulate complex industrial welded structures.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1990

C. Majorana, A. Natali and R. Vitaliani

The aim of the present work is to describe a numerical approach to the analysis of three‐dimensional reinforced concrete structures subject to prestressing. The finite…

Abstract

The aim of the present work is to describe a numerical approach to the analysis of three‐dimensional reinforced concrete structures subject to prestressing. The finite element approach developed is described, with particular regard to the configuration of finite elements in relation to numerical model generation. An elasto‐viscoplastic material law is adopted. The non‐linear formulation is discussed, pointing out theoretical and numerical aspects. The computational examples, carried out using a specially developed code, aim at illustrating the characteristic aspects of the proposed approach.

Details

Engineering Computations, vol. 7 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 March 2000

Claude Blanzé, Laurent Champaney and Pierre Vedrine

This paper focuses on the design of a superconducting quadrupole prototype. This structure includes many frictional contact zones, and the loading conditions are complex…

Abstract

This paper focuses on the design of a superconducting quadrupole prototype. This structure includes many frictional contact zones, and the loading conditions are complex (mechanical, thermal and magnetic). A dedicated computational strategy, based on both a decomposition of the structure and an iterative resolution scheme, has been applied to solve this problem. A simplified approach is used to take complex loading conditions into account. The initial set of results, which are presented herein, demonstrates the interest of this approach with respect to classical finite element methods. This study was conducted within the framework of a joint research contract between the CEA (DSM/DPANIA/STCM) and LMT‐Cachan.

Details

Engineering Computations, vol. 17 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 18