Search results

1 – 10 of 16
Article
Publication date: 3 January 2017

Vinicius Malatesta, Josuel Kruppa Rogenski and Leandro Franco de Souza

The centrifugal instability mechanism of boundary layers over concave surfaces is responsible for the development of quasi-periodic, counter-rotating vortices aligned in a…

Abstract

Purpose

The centrifugal instability mechanism of boundary layers over concave surfaces is responsible for the development of quasi-periodic, counter-rotating vortices aligned in a streamwise direction known as Görtler vortices. By distorting the boundary layer structure in both the spanwise and the wall-normal directions, Görtler vortices may modify heat transfer rates. The purpose of this study is to conduct spatial numerical simulation experiments based on a vorticity–velocity formulation of the incompressible Navier–Stokes system of equations to quantify the role of the transition in the heat transfer process.

Design/methodology/approach

Experiments are conducted using an in-house, parallel, message-passing code. Compact finite difference approximations and a spectral method are used to approximate spatial derivatives. A fourth-order Runge–Kutta method is adopted for time integration. The Poisson equation is solved using a geometric multigrid method.

Findings

Results show that the numerical method can capture the physics of transitional flows over concave geometries. They also show that the heat transfer rates in the late stages of the transition may be greater than those for either laminar or turbulent ones.

Originality/value

The numerical method can be considered as a robust alternative to investigate heat transfer properties in transitional boundary layer flows over concave surfaces.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 June 2009

Santanu De, K. Nagendra and K.N. Lakshmisha

The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid‐driven flow in a three‐dimensional…

4721

Abstract

Purpose

The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid‐driven flow in a three‐dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two‐dimensional (2D) cavity.

Design/methodology/approach

The second‐order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25‐4) and Reynolds numbers (0.01‐1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier‐Stokes (NS) equations and with available experimental data.

Findings

The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side‐walls in transverse direction (in 3D), due to which the vorticity in the core‐region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry‐plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid‐motion are observed; these are weak at low Reynolds numbers, but become quite strong at high Reynolds numbers.

Originality/value

The findings will be useful in the study of variety of enclosed fluid flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2017

Gaurav Kumar, Ashoke De and Harish Gopalan

Hybrid Reynolds-averaged Navier–Stokes large eddy simulation (RANS-LES) methods have become popular for simulation of massively separated flows at high Reynolds numbers due to…

Abstract

Purpose

Hybrid Reynolds-averaged Navier–Stokes large eddy simulation (RANS-LES) methods have become popular for simulation of massively separated flows at high Reynolds numbers due to their reduced computational cost and good accuracy. The current study aims to examine the performance of LES and hybrid RANS-LES model for a given grid resolution.

Design/methodology/approach

For better assessment and contrast of model performance, both mean and instantaneous flow fields have been investigated. For studying instantaneous flow, proper orthogonal decomposition has been used.

Findings

Current analysis shows that hybrid RANS-LES is capable of achieving similar accuracy in prediction of both mean and instantaneous flow fields at a very coarse grid as compared to LES.

Originality/value

Focusing mostly on the practical applications of computation, most of the attention has been given to the prediction of one-point flow statistics and little consideration has been put to two-point statistics. Here, two-point statistics has been considered using POD to investigate unsteady turbulent flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1993

SHIN FANN and WEN‐JEI YANG

A numerical study is performed to investigate flow instability phenomena in a square channel with steady, laminar throughflow. The channel rotates around an axis perpendicular to…

Abstract

A numerical study is performed to investigate flow instability phenomena in a square channel with steady, laminar throughflow. The channel rotates around an axis perpendicular to the channel longitudinal axis. The flow field extends from the channel entrance to a distance of 120 to 600Dh. The range of Reynolds number is Re = 300−2000. The inlet flow velocity is assumed uniform. Surface vorticity intensity is introduced to indicate the variation of vortices. It is revealed that at intermediate Reynolds numbers (680 > Re > 300), the flow is characterized by three vortex patterns: at slow rotation there is one vortex pair; at intermediate rotation a secondary vortex, in addition to the original vortex, emerges near the trailing wall and then breaks down downstream; and at rapid rotation the secondary vortex does not exist with the flow being restabilized to form a single‐pair vortex pattern. At low Reynolds numbers (Re ≤ 300), the flow exhibits a single‐pair vortex pattern, while at high Reynolds numbers (Re ≥ 680), the flow experiences the emergence and breakdown of a secondary vortex, but no restabilization is found with an increase in the rotational speed. It is also disclosed that the variation of the vortices is related to the distance from the inlet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2015

Nader Pourmahmoud, Masoud Rashidzadeh and Amir Hassanzadeh

The purpose of this paper is to investigate the effect of convergent nozzles on the thermal separation inside a vortex tube, using a three-dimensional (3D) computational fluid…

Abstract

Purpose

The purpose of this paper is to investigate the effect of convergent nozzles on the thermal separation inside a vortex tube, using a three-dimensional (3D) computational fluid dynamics (CFD) model as predicting tool.

Design/methodology/approach

The 3D finite volume formulation with the standard k-ε turbulence model has been used to carry out all the computations. Six different nozzles for convergence angle have been utilized β=0, 2, 4, 6, 8 and 10°. All other geometrical parameters were considered fixed at the experimental condition, i.e. main tube and chamber sizes and 294.2 K of gas temperature at inlets.

Findings

The numerical results present that there is an optimum convergence angle for obtaining the highest efficiency and β=2° is the optimal candidate under the simulations. It can be pointed that, some numerical data are validated by the available experimental results which show good agreement.

Practical implications

It is a useful and simple design of nozzle injectors to achieve the maximum cooling capacity.

Originality/value

In the work with assuming the advantages of using convergent nozzles on the energy separation and their considerable role on the creation of maximum cooling capacity of machine, the shape of nozzles was concentrated. This research believes that choosing an appropriate convergence angle is one of the important physical parameters. So far, an effective investigation toward the optimization of convergent nozzles has not been done but the importance of this subject can be regarded as an interesting research theme; so that the machine would operate in the way that the maximum cooling effect or the maximum refrigeration capacity is provided.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2014

Tomomi Uchiyama, Yutaro Yoshii and Hirotaka Hamada

This study is concerned with the direct numerical simulation (DNS) of a turbulent channel flow by an improved vortex in cell (VIC) method. The paper aims to discuss these issues…

Abstract

Purpose

This study is concerned with the direct numerical simulation (DNS) of a turbulent channel flow by an improved vortex in cell (VIC) method. The paper aims to discuss these issues.

Design/methodology/approach

First, two improvements for VIC method are proposed to heighten the numerical accuracy and efficiency. A discretization method employing a staggered grid is presented to ensure the consistency among the discretized equations as well as to prevent the numerical oscillation of the solution. A correction method for vorticity is also proposed to compute the vorticity field satisfying the solenoidal condition. Second, the DNS for a turbulent channel flow is conducted by the improved VIC method. The Reynolds number based on the friction velocity and the channel half width is 180.

Findings

It is highlighted that the simulated turbulence statistics, such as the mean velocity, the Reynolds shear stress and the budget of the mean enstrophy, agree well with the existing DNS results. It is also shown that the organized flow structures in the near-wall region, such as the streaks and the streamwise vortices, are favourably captured. These demonstrate the high applicability of the improved VIC method to the DNS for wall turbulent flows.

Originality/value

This study enables the VIC method to perform the DNS for wall turbulent flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2002

M. Wrona and E. Tuliszka‐Sznitko

The linear and non‐linear stability of an incompressible swept attachment‐line boundary layer are analysed, within the Görtler‐Hämmerlin framework. The system of perturbation…

Abstract

The linear and non‐linear stability of an incompressible swept attachment‐line boundary layer are analysed, within the Görtler‐Hämmerlin framework. The system of perturbation equations is solved using spectral collocation method based on Chebyshev polynomials. The global solution method utilised for solving the eigenproblem yields the full spectrum of the least damped waves. The influence of suction and blowing on critical Reynolds numbers is analysed. A comparison of the present paper linear solutions for both zero suction and a layer in which blowing and suction are applied with the Spalart's DNS solutions (obtained for small initial disturbances) shows very good agreement. The transition Reynolds numbers have been predicted using well known exp(n) method and results are compared with the experimental data of Powilleit.

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 August 2013

Riccardo Mereu, Emanuela Colombo and Fabio Inzoli

This paper aims to present the results of a numerical investigation of the fluid dynamics and heat transfer behavior of forced incompressible flow inside a rectangular wavy…

Abstract

Purpose

This paper aims to present the results of a numerical investigation of the fluid dynamics and heat transfer behavior of forced incompressible flow inside a rectangular wavy channel. Reynolds numbers, based on hydraulic inlet diameter and bulk velocity, ranging from 500 to 10000 are investigated.

Design/methodology/approach

The numerical analysis is performed by means of a finite volume commercial CFD code. A Reynolds Averaged Navier‐Stokes (RANS) approach is applied to a three‐dimensional fluid domain over a single module with periodic conditions. Further analysis over six modules is also performed to validate the periodic numerical domain.

Findings

Mean velocity and temperature fields are obtained. The global values of Nusselt number are compared with data obtained by an experimental facility with the same geometry and operating with Re from 1000 to 10000.

Research limitations/implications

Some limitations related to the numerical approach used are observed in laminar‐turbulent transitional regime at Reynolds number between 1000 and 2000 and in the transient prediction. More expensive numerical method might be used (LES approach) to improve transitional prediction.

Practical implications

The numerical model can be used to understand flow and thermal fields on the present configuration. A major knowledge of fluid dynamics and heat transfer processes may support the design and optimization of heat exchangers.

Originality/value

The validation of numerical model permits supporting experimental campaigns. A faster and cheaper optimization process for improving the performance of the component is thus made available for designers, product engineers and R&D researchers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2006

Anwar Hossain and Rama Subba Reddy Gorla

To investigate the effect of viscous dissipation on unsteady, combined convective heat transfer to water near its density maximum in a rectangular cavity.

Abstract

Purpose

To investigate the effect of viscous dissipation on unsteady, combined convective heat transfer to water near its density maximum in a rectangular cavity.

Design/methodology/approach

The upwind finite difference scheme along with successive over relaxation iteration technique is used to solve the governing equations for mixed convection flow of water with density maximum inversion in a rectangular cavity.

Findings

The effect of viscous dissipation was to increase the fluid temperature and resulted in the formation of vortex motion near the lower part of the cavity in an opposite direction to the central vortex. An increase in the Eckert number and Reynolds number of the flow resulted in augmented surface heat transfer rates from the top heated surface.

Research limitations/implication

The analysis is valid for unsteady, two dimensional laminar flow. Isothermal conditions are assumed for the top and bottom walls. An extension to unsteady three dimensional flow case is left for future work.

Practical implications

The method is very useful to analyze nuclear reactor thermal/hydraulic loss of coolant transients, energy conservation, ventilation of rooms, solar energy collection, cooling of electronic equipment, dispersion of waste heat in estuaries and crystal growth in liquids.

Originality/value

The results of this study may be of interest to engineers interested in heat transfer augmentation of mixed convection in window cavities.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1992

SHIN FANN, WEN‐JEI YANG and S. MOCHIZUKI

A theoretical study is performed on three‐dimensional, heat transfer and fluid flow in radially rotating heated channels with steady, laminar throughflow. Consideration is given…

Abstract

A theoretical study is performed on three‐dimensional, heat transfer and fluid flow in radially rotating heated channels with steady, laminar throughflow. Consideration is given to the channel of different geometry. Both the rotational speed and throughflow rate are varied. The flow is hydrodynamically and thermally developing, with a constant wall heat flux. The velocity‐vorticity method is employed in the formulation and numerical results are obtained by means of a finite‐difference technique. The Nusselt number, friction factor, and temperature and velocity distributions are determined, and the role of the Coriolis force on the entrance‐region transport phenomena is investigated. Results are compared with the existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 16