Search results

1 – 10 of over 5000
Book part
Publication date: 5 October 2018

Aminah Robinson Fayek and Rodolfo Lourenzutti

Construction is a highly dynamic environment with numerous interacting factors that affect construction processes and decisions. Uncertainty is inherent in most aspects of…

Abstract

Construction is a highly dynamic environment with numerous interacting factors that affect construction processes and decisions. Uncertainty is inherent in most aspects of construction engineering and management, and traditionally, it has been treated as a random phenomenon. However, there are many types of uncertainty that are not naturally modelled by probability theory, such as subjectivity, ambiguity and vagueness. Fuzzy logic provides an approach for handling such uncertainties. However, fuzzy logic alone has some limitations, including its inability to learn from data and its extensive reliance on expert knowledge. To address these limitations, fuzzy logic has been combined with other techniques to create fuzzy hybrid techniques, which have helped solve complex problems in construction. In this chapter, a background on fuzzy logic in the context of construction engineering and management applications is presented. The chapter provides an introduction to uncertainty in construction and illustrates how fuzzy logic can improve construction modelling and decision-making. The role of fuzzy logic in representing uncertainty is contrasted with that of probability theory. Introductory material is presented on key definitions, properties and methods of fuzzy logic, including the definition and representation of fuzzy sets and membership functions, basic operations on fuzzy sets, fuzzy relations and compositions, defuzzification methods, entropy for fuzzy sets, fuzzy numbers, methods for the specification of membership functions and fuzzy rule-based systems. Finally, a discussion on the need for fuzzy hybrid modelling in construction applications is presented, and future research directions are proposed.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Article
Publication date: 16 February 2024

Qing Wang, Xiaoli Zhang, Jiafu Su and Na Zhang

Platform-based enterprises, as micro-entities in the platform economy, have the potential to effectively promote the low-carbon development of both supply and demand sides in the…

Abstract

Purpose

Platform-based enterprises, as micro-entities in the platform economy, have the potential to effectively promote the low-carbon development of both supply and demand sides in the supply chain. Therefore, this paper aims to provide a multi-criteria decision-making method in a probabilistic hesitant fuzzy environment to assist platform-type companies in selecting cooperative suppliers for carbon reduction in green supply chains.

Design/methodology/approach

This paper combines the advantages of probabilistic hesitant fuzzy sets (PHFS) to address uncertainty issues and proposes an improved multi-criteria decision-making method called PHFS-DNMEREC-MABAC for aiding platform-based enterprises in selecting carbon emission reduction collaboration suppliers in green supply chains. Within this decision-making method, we enhance the standardization process of both the DNMEREC and MABAC methods by directly standardizing probabilistic hesitant fuzzy elements. Additionally, a probability splitting algorithm is introduced to handle probabilistic hesitant fuzzy elements of varying lengths, mitigating information bias that traditional approaches tend to introduce when adding values based on risk preferences.

Findings

In this paper, we apply the proposed method to a case study involving the selection of carbon emission reduction collaboration suppliers for Tmall Mart and compare it with the latest existing decision-making methods. The results demonstrate the applicability of the proposed method and the effectiveness of the introduced probability splitting algorithm in avoiding information bias.

Originality/value

Firstly, this paper proposes a new multi-criteria decision making method for aiding platform-based enterprises in selecting carbon emission reduction collaboration suppliers in green supply chains. Secondly, in this method, we provided a new standard method to process probability hesitant fuzzy decision making information. Finally, the probability splitting algorithm was introduced to avoid information bias in the process of dealing with inconsistent lengths of probabilistic hesitant fuzzy elements.

Details

Asia Pacific Journal of Marketing and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 6 November 2023

Zhiying Wang and Hongmei Jia

Forecasting demand of emergency supplies under major epidemics plays a vital role in improving rescue efficiency. Few studies have combined intuitionistic fuzzy set with…

Abstract

Purpose

Forecasting demand of emergency supplies under major epidemics plays a vital role in improving rescue efficiency. Few studies have combined intuitionistic fuzzy set with grey-Markov method and applied it to the prediction of emergency supplies demand. Therefore, this article aims to establish a novel method for emergency supplies demand forecasting under major epidemics.

Design/methodology/approach

Emergency supplies demand is correlated with the number of infected cases in need of relief services. First, a novel method called the Intuitionistic Fuzzy TPGM(1,1)-Markov Method (IFTPGMM) is proposed, and it is utilized for the purpose of forecasting the number of people. Then, the prediction of demand for emergency supplies is calculated using a method based on the safety inventory theory, according to numbers predicted by IFTPGMM. Finally, to demonstrate the effectiveness of the proposed method, a comparative analysis is conducted between IFTPGMM and four other methods.

Findings

The results show that IFTPGMM demonstrates superior predictive performance compared to four other methods. The integration of the grey method and intuitionistic fuzzy set has been shown to effectively handle uncertain information and enhance the accuracy of predictions.

Originality/value

The main contribution of this article is to propose a novel method for emergency supplies demand forecasting under major epidemics. The benefits of utilizing the grey method for handling small sample sizes and intuitionistic fuzzy set for handling uncertain information are considered in this proposed method. This method not only enhances existing grey method but also expands the methodologies used for forecasting demand for emergency supplies.

Highlights (for review)

  1. An intuitionistic fuzzy TPGM(1,1)-Markov method (IFTPGMM) is proposed.

  2. The safety inventory theory is combined with IFTPGMM to construct a prediction method.

  3. Asymptomatic infected cases are taken to forecast the demand for emergency supplies.

An intuitionistic fuzzy TPGM(1,1)-Markov method (IFTPGMM) is proposed.

The safety inventory theory is combined with IFTPGMM to construct a prediction method.

Asymptomatic infected cases are taken to forecast the demand for emergency supplies.

Details

Grey Systems: Theory and Application, vol. 14 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Book part
Publication date: 11 May 2007

Claude Rubinson and Charles C. Ragin

Shalev's (2007) critique of the use of multiple regression in comparative research brings together and synthesizes a variety of previous critiques, ranging from those focusing on…

Abstract

Shalev's (2007) critique of the use of multiple regression in comparative research brings together and synthesizes a variety of previous critiques, ranging from those focusing on foundational issues (e.g., the persistent problem of limited diversity), to estimation issues (e.g., the unrealistic assumption of correct model specification), to narrow technical issues (e.g., the difficulty of deriving valid standard errors for regression coefficients in pooled cross-sectional time-series models). Broadly speaking, these concerns can be described as epistemological, theoretical, and methodological, respectively. While the distinctions among these three are not always clear-cut, the tripartite scheme provides a useful way to map the different kinds of critiques that may be directed at the use of regression analysis in comparative research. In the first half of this essay we build upon Shalev's discussion to clarify the conditions under which regression analysis may be epistemologically, theoretically, or methodologically inappropriate for comparative research. Our goal is to situate Shalev's specific critiques of the use of multiple regression in comparative work within the context of social research in general.

Details

Capitalisms Compared
Type: Book
ISBN: 978-1-84950-414-0

Article
Publication date: 10 August 2015

Wei Zhu, Chen-yu Li, Xiao-yan Xiao and Wen-bin Xu

– The purpose of this paper is to develop an effective treatment to analyze and diagnose urban rail transit (URT) vehicle maintenance strategy.

Abstract

Purpose

The purpose of this paper is to develop an effective treatment to analyze and diagnose urban rail transit (URT) vehicle maintenance strategy.

Design/methodology/approach

In this paper, the technique of Failure Mode and Effects Analysis (FMEA) is introduced into the examination of URT trains, first. Then the method of fuzzy-set-based assessment for FMEA is presented, which is the quantitative tool of Fuzzy-Set-based treatment for FMEA in analysis and diagnoses to URT maintenance strategy. Moreover, recommendations for further improvement of the proposed approach are also provided. Initial application into the vehicle maintenance of Shanghai URT System shows, that the proposed approach has a good performance and consequently is worth further development.

Findings

The paper presents a FMEA and fuzzy-set-based theoretical approach for analyzing and diagnosing current methods in URT vehicle maintenance strategy.

Practical implications

With rapid development of URT systems in the world especially in those highly populated areas, much more attentions are turning to researches on URT maintenance, nevertheless, few quantitative research achievement are mentioned or applied. This paper is a tentative attempt at introducing fuzzy-set theory into quantitative analysis and diagnoses of URT maintenance strategy.

Originality/value

The study in this paper is helpful in theory and practice of URT maintenance and its methodology could be further applied into a broad family of facility group or system in other engineering fields.

Details

Journal of Quality in Maintenance Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 8 March 2021

Mustafa Said Yurtyapan and Erdal Aydemir

Enterprise Resource Planning (ERP) software which is a knowledge-based design on the interconnective communication of business units and information share, ensures that business…

Abstract

Purpose

Enterprise Resource Planning (ERP) software which is a knowledge-based design on the interconnective communication of business units and information share, ensures that business processes such as finance, production, purchasing, sales, logistics and human resources, are integrated and gathered under one roof. This integrated system allows the company to make fast and accurate decisions and increases its competitiveness. Therefore, for an enterprise, choosing the suitable ERP software is extremely important. The aim of this study is to present new research on the ERP software selection process by clarifying the uncertainties and find suitable software in a computational way.

Design/methodology/approach

ERP selection problem design includes uncertainties on the expert opinions and the criteria values using intuitionistic fuzzy set theory and interval grey-numbers to MACBETH multi criteria decision making method. In this paper, a new interval grey MACBETH method approach is proposed, and the degree of greyness approach is used for clarifying the uncertainties. Using this new approach in which grey numbers are used, it is aimed to observe the changes in the importance of the alternatives. Moreover, the intuitionistic fuzzy set method is applied by considering the importance of expert opinions separately.

Findings

The proposed method is based on quantitative decision making derived from qualitative judgments. The results given under uncertain conditions are compared with the results obtained under crisp conditions of the same methods. With the qualitative levels of experts reflected in the decision process, it is clearly seen that ERP software selection problem area has more effective alternative decision solutions to the uncertain environment, and decision makers should not undervalue the unsteadiness of criteria during ERP software selection process.

Originality/value

This study contributes to the relevant literature by (1) utilizing the MACBETH method in the selection of the ERP software by optimization, and (2) validating the importance of expert opinions with uncertainties on a proper ERP software selection procedure. So, the findings of this study can help the decision-makers to evaluate the ERP selection in uncertain conditions.

Details

Grey Systems: Theory and Application, vol. 12 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 13 October 2022

Masoud Shayganmehr, Anil Kumar, Jose Arturo Garza-Reyes and Edmundas Kazimieras Zavadskas

In this study, a novel framework was proposed to assess the trust in e-government (e-Gov) services under an uncertain environment. The proposed framework was applied in Iranian…

Abstract

Purpose

In this study, a novel framework was proposed to assess the trust in e-government (e-Gov) services under an uncertain environment. The proposed framework was applied in Iranian municipality websites of e-Gov services to evaluate the readiness score of trust in e-Gov services.

Design/methodology/approach

A unique hybrid research methodology was proposed. In the first phase, a comprehensive set of indices were determined from an extensive literature review and finalized by employing the fuzzy Delphi method. In the second phase, interval-valued intuitionistic fuzzy set (IVIFS) -was utilized to model the problem's uncertainty with analytic called IVIFS- hierarchy process (AHP) to determine the importance of indices and indicators by assigning the weights. In the third phase, the fuzzy evaluation method (FEM) is followed for assessing the readiness score of indices in case studies.

Findings

The findings indicated that “Trust in government” is the most significant index affecting citizen's trust in e-Gov services while “Maintenance and support” has the least impact on user's intention to use e–Gov services.

Research limitations/implications

The study contributes by introducing a unique research methodology that integrates three phases, including fuzzy Delphi, IVIFS AHP and fuzzy evaluation method. Moreover, the fuzzy sets theory helps to reach a more accurate result by modeling the inherent ambiguity of indicators and indices. Interval-valued intuitionistic fuzzy models the ambiguity of experts' judgments in an interval.

Practical implications

The study helps policy makers to monitor wider aspects of trust in e-Gov services as well as understanding their importance. The study enables policy makers to apply the framework to any potential case studies to evaluate the readiness score of indices and recognizing strengths and weakness of trust dimensions as well as recommending advice for improving the situation.

Originality/value

The study is one of the few to indicate significant indices of trust in e-Gov services in developing countries. The study shows the importance of indicators and indices by assigning a weight. Additionally, the framework can assess the readiness score of various case studies.

Details

Information Technology & People, vol. 36 no. 7
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 1 December 2004

Hong Zhang, Heng Li and C.M. Tam

Construction‐oriented discrete‐event simulation often faces the problem of defining uncertain information input, such as subjectivity in selecting probability distributions that…

1463

Abstract

Construction‐oriented discrete‐event simulation often faces the problem of defining uncertain information input, such as subjectivity in selecting probability distributions that result from insufficient or lack of site productivity data. This paper proposes incorporation of fuzzy set theory with discrete‐event simulation to handle the vagueness, imprecision and subjectivity in the estimation of activity duration, especially when insufficient or no sample data are available. Based upon an improved activity scanning simulation algorithm, a fuzzy distance ranking measure is adopted in fuzzy simulation time advancement and event selection for simulation experimentation. The uses of the fuzzy activity duration and the probability distribution‐modeled duration are compared through a series of simulation experiments. It is observed that the fuzzy simulation outputs are arrived at through only one cycle of fuzzy discrete‐event simulation, still they contain all the statistical information that are produced through multiple cycles of simulation experiments when the probability distribution approach is adopted.

Details

Engineering, Construction and Architectural Management, vol. 11 no. 6
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 April 2014

Jiqiang Chen, Witold Pedrycz, Litao Ma and Chao Wang

In a risk analysis system, different underlying indices often play different roles in identifying the risk scale of the total target in a system, so a concept of discriminatory…

Abstract

Purpose

In a risk analysis system, different underlying indices often play different roles in identifying the risk scale of the total target in a system, so a concept of discriminatory weight is introduced first. With the help of discriminatory weight and membership functions, a new method for information security risk analysis is proposed. The purpose of this paper is to discuss the above issues.

Design/methodology/approach

First, a concept of discriminatory weight is introduced. Second, with the help of fuzzy sets, risk scales are captured in terms of fuzzy sets (namely their membership functions). Third, a new risk analysis method involving discriminatory weights is proposed to realize a transformation from the membership degrees of the underlying indices to the membership degrees of the total target. At last, an example of information security risk analysis shows the effectiveness and feasibleness of the new method.

Findings

The new method generalizes the weighted-average method. The comparative analysis done with respect to other two methods show that the proposed method exhibits higher classification accuracy. Therefore, the proposed method can be applied to other risk analysis system with a hierarchial.

Originality/value

This paper proposes a new method for information security risk analysis with the help of membership functions and the concept of discriminatory weight. The new method generalizes the weighted-average method. Comparative analysis done with respect to other two methods show that the proposed method exhibits higher classification accuracy in E-government information security system. What is more, the proposed method can be applied to other risk analysis system with a hierarchial.

1 – 10 of over 5000