Search results

1 – 10 of over 1000
Article
Publication date: 28 April 2023

Daas Samia and Innal Fares

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…

Abstract

Purpose

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.

Design/methodology/approach

The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.

Findings

A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.

Research limitations/implications

This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.

Originality/value

Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 18 September 2023

Jianxiang Qiu, Jialiang Xie, Dongxiao Zhang and Ruping Zhang

Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal…

Abstract

Purpose

Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal hyperplane, which results in its sensitivity to noise. To solve this problem, this study proposes a twin support vector machine model based on fuzzy systems (FSTSVM).

Design/methodology/approach

This study designs an effective fuzzy membership assignment strategy based on fuzzy systems. It describes the relationship between the three inputs and the fuzzy membership of the sample by defining fuzzy inference rules and then exports the fuzzy membership of the sample. Combining this strategy with TSVM, the FSTSVM is proposed. Moreover, to speed up the model training, this study employs a coordinate descent strategy with shrinking by active set. To evaluate the performance of FSTSVM, this study conducts experiments designed on artificial data sets and UCI data sets.

Findings

The experimental results affirm the effectiveness of FSTSVM in addressing binary classification problems with noise, demonstrating its superior robustness and generalization performance compared to existing learning models. This can be attributed to the proposed fuzzy membership assignment strategy based on fuzzy systems, which effectively mitigates the adverse effects of noise.

Originality/value

This study designs a fuzzy membership assignment strategy based on fuzzy systems that effectively reduces the negative impact caused by noise and then proposes the noise-robust FSTSVM model. Moreover, the model employs a coordinate descent strategy with shrinking by active set to accelerate the training speed of the model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 10 October 2023

Vivek Gopi and Saleeshya P.G.

Small and medium-scale enterprises (SMEs) that operate with modest financial investments and commodities face numerous challenges to remain in business. One major philosophy used…

64

Abstract

Purpose

Small and medium-scale enterprises (SMEs) that operate with modest financial investments and commodities face numerous challenges to remain in business. One major philosophy used by SMEs these days is the implementation of lean manufacturing to get solutions for various issues they encounter. But is lean getting sustained over time? The purpose of this research is to design a Sustainable Lean Performance Index (SLPI) to assess the sustainability of lean systems and to pinpoint the variables that might be present as potential lean system inhibitors which hinder the sustainability of leanness.

Design/methodology/approach

A multi-level sustainable lean performance model is constructed and presented based on the literature research, field investigation and survey conducted by administering a questionnaire. Fuzzy logic approach is used to analyse the multi-level model.

Findings

SLPI for the SMEs is found using fuzzy logic approach. Additionally, the ranking score system is applied to categorise attributes into weak and strong categories. The performance of the current lean system is determined to be “fair” based on the Euclidean distance approach and the SLPI for SMEs.

Research limitations/implications

This work is concentrated only in South India because of the country’s vast geographical area and rich and wide diversity in industrial culture of the nation. Hence, more work can be done incorporating the other parts of the country and can analyse the lean behaviour in a comparative manner.

Practical implications

The generalised sustainable lean model analysed using fuzzy logic identifies the inhibitors and level of performance of SMEs in South India. This can be implemented to find out the level of performance in the SMEs after a deeper study and analysis around the SMEs of the country.

Originality

The sustainable assessment of lean parameters in the SMEs of India is found to be very less in literature, and it lacks profundity. The model established in this study assesses the sustainability of the lean methodology adopted in SMEs by considering the lean and sustainability attributes along with enablers like technology, ethics, customer satisfaction and innovation with the aid of fuzzy logic.

Details

Journal of Modelling in Management, vol. 19 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 8 August 2022

Sitsofe Kwame Yevu, Ann Tit Wan Yu, Amos Darko, Gabriel Nani and David J. Edwards

This study aims to investigate the dynamic influences of clustered barriers that hinder electronic procurement technology (EPT) implementation in construction procurement, using…

Abstract

Purpose

This study aims to investigate the dynamic influences of clustered barriers that hinder electronic procurement technology (EPT) implementation in construction procurement, using the neuro-fuzzy system.

Design/methodology/approach

A comprehensive literature review was conducted and 21 barriers to EPT implementation within construction projects were identified. Based on an expert survey, 121 datasets were gathered for this study. Using mean and normalization analysis for the datasets, 15 out of the 21 barriers were deemed to have critical influences in EPT barriers phenomenon. Subsequently, the critical barriers were classified into five groups: human-related; technological risk-related; government-related; industry growth-related; and financial-related. The relationships and influence patterns between the groups of barriers to EPT implementation were analyzed using the neuro-fuzzy system. Furthermore, sensitivity analysis was performed to examine the dynamic influence levels of the barriers within the hindrance level composition.

Findings

The results reveal that addressing one barrier group does not reduce the high levels of hindrances experienced in EPT implementation. However, addressing at least two barrier groups mostly tends to reduce the hindrance levels for EPT implementation. Further, this study revealed that addressing some barrier group pairings, such as technological risk-related and government-related barriers, while other barrier groups remained at a high level, still resulted in high levels of hindrances to EPT implementation in construction procurement.

Research limitations/implications

This study provides insights for researchers to help them contribute to the development of theory with contemporary approaches based on the influence patterns of barrier interrelationships.

Practical implications

This study provides a model that would help practitioners and decision makers in construction procurement to understand and effectively determine the complex and dynamic influences of barrier groups to EPT uptake, for the development of suitable mitigation strategies.

Originality/value

This study provides novel insights into the complex influence patterns among grouped barriers concerning EPT adoption in the construction industry. Researchers and practitioners are equipped with knowledge on the influence patterns of barriers. This knowledge aids the development of effective strategies that mitigate the combined groups of barriers, and promote the wider implementation of EPT in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 February 2024

Swarup Mukherjee, Anupam De and Supriyo Roy

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk…

Abstract

Purpose

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk prioritization uses a risk priority number (RPN) aligned to the risk analysis. Imprecise information coupled with a lack of dealing with hesitancy margins enlarges the scope, leading to improper assessment of risks. This significantly affects monitoring quality and performance. Against the backdrop, a methodology that identifies and prioritizes the operational supply chain risk factors signifies better risk assessment.

Design/methodology/approach

The study proposes a multi-criteria model for risk prioritization involving multiple decision-makers (DMs). The methodology offers a robust, hybrid system based on the Intuitionistic Fuzzy (IF) Set merged with the “Technique for Order Performance by Similarity to Ideal Solution.” The nature of the model is robust. The same is shown by applying fuzzy concepts under multi-criteria decision-making (MCDM) to prioritize the identified business risks for better assessment.

Findings

The proposed IF Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) for risk prioritization model can improve the decisions within organizations that make up the chains, thus guaranteeing a “better quality in risk management.” Establishing an efficient representation of uncertain information related to traditional failure mode and effects analysis (FMEA) treatment involving multiple DMs means identifying potential risks in advance and providing better supply chain control.

Research limitations/implications

In a company’s supply chain, blockchain allows data storage and transparent transmission of flows with traceability, privacy, security and transparency (Roy et al., 2022). They asserted that blockchain technology has great potential for traceability. Since risk assessment in supply chain operations can be treated as a traceability problem, further research is needed to use blockchain technologies. Lastly, issues like risk will be better assessed if predicted well; further research demands the suitability of applying predictive analysis on risk.

Practical implications

The study proposes a hybrid framework based on the generic risk assessment and MCDM methodologies under a fuzzy environment system. By this, the authors try to address the supply chain risk assessment and mitigation framework better than the conventional one. To the best of their knowledge, no study is found in existing literature attempting to explore the efficacy of the proposed hybrid approach over the traditional RPN system in prime sectors like steel (with production planning data). The validation experiment indicates the effectiveness of the results obtained from the proposed IF TOPSIS Approach to Risk Prioritization methodology is more practical and resembles the actual scenario compared to those obtained using the traditional RPN system (Kim et al., 2018; Kumar et al., 2018).

Originality/value

This study provides mathematical models to simulate the supply chain risk assessment, thus helping the manufacturer rank the risk level. In the end, the authors apply this model in a big-sized organization to validate its accuracy. The authors validate the proposed approach to an integrated steel plant impacting the production planning process. The model’s outcome substantially adds value to the current risk assessment and prioritization, significantly affecting better risk management quality.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 24 October 2023

Bianca Arcifa de Resende, Franco Giuseppe Dedini, Jony Javorsky Eckert, Tiago F.A.C. Sigahi, Jefferson de Souza Pinto and Rosley Anholon

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy…

Abstract

Purpose

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy variations, supported by a case application in the aeronautical sector.

Design/methodology/approach

Based on experts' opinions in risk analysis within the aeronautical sector, rules governing the relationship between severity, occurrence, detection and risk factor were defined. This served as input for developing a fuzzyfied FMEA tool using the Matlab Fuzzy Logic Toolbox. The tool was applied to the sealing process in a company within the aeronautical sector, using triangular and trapezoidal membership functions, and the results were compared with the traditional FMEA approach.

Findings

The results of the comparative application of traditional FMEA and fuzzyfied FMEA using triangular and trapezoidal functions have yielded valuable insights into risk analysis. The findings indicated that fuzzyfied FMEA maintained coherence with the traditional analysis in identifying higher-risk effects, aligning with the prioritization of critical failure modes. Additionally, fuzzyfied FMEA allowed for a more refined prioritization by accounting for variations in each variable through fuzzy rules, thereby improving the accuracy of risk analysis and providing a more realistic representation of potential hazards. The application of the developed fuzzyfied FMEA approach showed promise in enhancing risk assessment in the aeronautical sector by considering uncertainties and offering a more detailed and context-specific analysis compared to conventional FMEA.

Practical implications

This study emphasizes the potential of fuzzyfied FMEA in enhancing risk assessment by accurately identifying critical failure modes and providing a more realistic representation of potential hazards. The application case reveals that the proposed tool can be integrated with expert knowledge to improve decision-making processes and risk mitigation strategies within the aeronautical industry. Due to its straightforward approach, this facilitating methodology could also prove beneficial in other industrial sectors.

Originality/value

This paper presents the development and application of a facilitating methodology for implementing Fuzzy FMEA, comparing it with the traditional approach and incorporating variations using triangular and trapezoidal functions. This proposed methodology uses the Toolbox Fuzzy Logic of Matlab to create a fuzzyfied FMEA tool, enabling a more nuanced and context-specific risk analysis by considering uncertainties.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 16 October 2023

Peng Wang and Renquan Dong

To improve the position tracking efficiency of the upper-limb rehabilitation robot for stroke hemiplegia patients, the optimization Learning rate of the membership function based…

Abstract

Purpose

To improve the position tracking efficiency of the upper-limb rehabilitation robot for stroke hemiplegia patients, the optimization Learning rate of the membership function based on the fuzzy impedance controller of the rehabilitation robot is propose.

Design/methodology/approach

First, the impaired limb’s damping and stiffness parameters for evaluating its physical recovery condition are online estimated by using weighted least squares method based on recursive algorithm. Second, the fuzzy impedance control with the rule has been designed with the optimal impedance parameters. Finally, the membership function learning rate online optimization strategy based on Takagi-Sugeno (TS) fuzzy impedance model was proposed to improve the position tracking speed of fuzzy impedance control.

Findings

This method provides a solution for improving the membership function learning rate of the fuzzy impedance controller of the upper limb rehabilitation robot. Compared with traditional TS fuzzy impedance controller in position control, the improved TS fuzzy impedance controller has reduced the overshoot stability time by 0.025 s, and the position error caused by simulating the thrust interference of the impaired limb has been reduced by 8.4%. This fact is verified by simulation and test.

Originality/value

The TS fuzzy impedance controller based on membership function online optimization learning strategy can effectively optimize control parameters and improve the position tracking speed of upper limb rehabilitation robots. This controller improves the auxiliary rehabilitation efficiency of the upper limb rehabilitation robot and ensures the stability of auxiliary rehabilitation training.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 January 2024

Zujin Jin, Zixin Yin, Siyang Peng and Yan Liu

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy…

Abstract

Purpose

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy. This abstract introduces a novel approach, the nonlinear subsystem adaptive dispersed fuzzy compensation control (ADFCC) method, aimed at enhancing the precision of LOMPSs.

Design/methodology/approach

The ADFCC model for LOMPS is developed through a nonlinear fuzzy adaptive algorithm. This model incorporates control parameters and disturbance terms (such as those arising from the external environment, friction and correlation) between subsystems to facilitate ADFCC. Error analysis is performed using the subsystem output parameters, and the resulting errors are used as feedback for compensation control.

Findings

Experimental analysis is conducted, specifically under the commonly used concentric circle processing trajectory in LOMPS. This analysis validates the effectiveness of the control model in enhancing processing accuracy.

Originality/value

The ADFCC strategy is demonstrated to significantly improve the accuracy of LOMPS output, offering a promising solution to the problem of correlated disturbances. This work holds the potential to benefit a wide range of practical applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 December 2023

Umayal Palaniappan and L. Suganthi

The purpose of this research is to present an integrated methodological framework to aid in performance stewardship of management institutions according to their strategies based…

Abstract

Purpose

The purpose of this research is to present an integrated methodological framework to aid in performance stewardship of management institutions according to their strategies based on a holistic evaluation encompassing social, economic and environmental dimensions.

Design/methodology/approach

A Mamdani fuzzy inference system (FIS) approach was adopted to design the quantitative models with respect to balanced scorecard (BSC) perspectives to demonstrate dynamic capability. Individual models were developed for each perspective of BSC using Mamdani FIS. Data was collected from subject matter experts in management education.

Findings

The proposed methodology is able to successfully compute the scores for each perspective. Effective placement, teaching learning process, faculty development and systematic feedback from the stakeholders were found to be the key drivers for revenue generation. The model is validated as the results were well accepted by the head of the institution after implementation.

Research limitations/implications

The model resulting from this study will assist the institution to cyclically assess its performance, thus enabling continuous improvement. The strategy map provides the causality of the objectives across the four perspectives to aid the practitioners to better strategize. Also this study contributes to the literature of BSC as well to the applications of multi-criteria decision-making (MCDM) techniques.

Originality/value

Mamdani FIS integrated BSC model is a significant contribution to the academia of management education to quantitatively compute the performance of institutions. This quantified model reduces the ambiguity for practitioners to decide the performance levels for each metric and the priorities of metrics.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 24 March 2023

Ashti Yaseen Hussein and Faris Ali Mustafa

Spaciousness is defined as “the feeling of openness or room to wander” that has been affected by various physical factors. The purpose of this paper is to assess the spaciousness…

Abstract

Purpose

Spaciousness is defined as “the feeling of openness or room to wander” that has been affected by various physical factors. The purpose of this paper is to assess the spaciousness of space to determine how spacious the space is. Furthermore, the study intends to propose a fuzzy-based model to assess the degree of spaciousness in terms of physical parameters such as area, proportion, the ratio of window area to floor area and color value.

Design/methodology/approach

Fuzzy logic is the most appropriate mathematical model to assess uncertainty using nonhomogeneous variables. In contrast to conventional methods, fuzzy logic depends on partial truth theory. MATLAB Fuzzy Logic Toolbox was used as a computational model including a fuzzy inference system (FIS) using linguistic variables called membership functions to define parameters. As a result, fuzzy logic was used in this study to assess the spaciousness degree of design studios in universities in the Iraqi Kurdistan region.

Findings

The findings of the presented fuzzy model show the degree to which the input variables affect a space perceived as larger and more spacious. The relationship between parameters has been represented in three-dimensional surface diagrams. The positive relationship of spaciousness with the area, window-to-floor area ratio and color value has been determined. In contrast, the negative relationship between spaciousness and space proportion is described. Moreover, the three-dimensional surface diagram illustrates how the changes in the input values affect the spaciousness degree. Besides, the improvement in the spaciousness degree of the design studio increases the quality learning environment.

Originality/value

This study attempted to assess the degree of spaciousness in design studios. There has been no attempt carried out to combine educational space learning environments and computational methods. This study focused on the assessment of spaciousness using the MATLAB Fuzzy Logic toolbox that has not been integrated so far.

Details

Open House International, vol. 49 no. 1
Type: Research Article
ISSN: 0168-2601

Keywords

1 – 10 of over 1000