Search results

1 – 10 of 859
Article
Publication date: 28 April 2023

Daas Samia and Innal Fares

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…

Abstract

Purpose

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.

Design/methodology/approach

The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.

Findings

A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.

Research limitations/implications

This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.

Originality/value

Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 16 February 2024

Qing Wang, Xiaoli Zhang, Jiafu Su and Na Zhang

Platform-based enterprises, as micro-entities in the platform economy, have the potential to effectively promote the low-carbon development of both supply and demand sides in the…

Abstract

Purpose

Platform-based enterprises, as micro-entities in the platform economy, have the potential to effectively promote the low-carbon development of both supply and demand sides in the supply chain. Therefore, this paper aims to provide a multi-criteria decision-making method in a probabilistic hesitant fuzzy environment to assist platform-type companies in selecting cooperative suppliers for carbon reduction in green supply chains.

Design/methodology/approach

This paper combines the advantages of probabilistic hesitant fuzzy sets (PHFS) to address uncertainty issues and proposes an improved multi-criteria decision-making method called PHFS-DNMEREC-MABAC for aiding platform-based enterprises in selecting carbon emission reduction collaboration suppliers in green supply chains. Within this decision-making method, we enhance the standardization process of both the DNMEREC and MABAC methods by directly standardizing probabilistic hesitant fuzzy elements. Additionally, a probability splitting algorithm is introduced to handle probabilistic hesitant fuzzy elements of varying lengths, mitigating information bias that traditional approaches tend to introduce when adding values based on risk preferences.

Findings

In this paper, we apply the proposed method to a case study involving the selection of carbon emission reduction collaboration suppliers for Tmall Mart and compare it with the latest existing decision-making methods. The results demonstrate the applicability of the proposed method and the effectiveness of the introduced probability splitting algorithm in avoiding information bias.

Originality/value

Firstly, this paper proposes a new multi-criteria decision making method for aiding platform-based enterprises in selecting carbon emission reduction collaboration suppliers in green supply chains. Secondly, in this method, we provided a new standard method to process probability hesitant fuzzy decision making information. Finally, the probability splitting algorithm was introduced to avoid information bias in the process of dealing with inconsistent lengths of probabilistic hesitant fuzzy elements.

Details

Asia Pacific Journal of Marketing and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 24 October 2023

Bianca Arcifa de Resende, Franco Giuseppe Dedini, Jony Javorsky Eckert, Tiago F.A.C. Sigahi, Jefferson de Souza Pinto and Rosley Anholon

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy…

Abstract

Purpose

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy variations, supported by a case application in the aeronautical sector.

Design/methodology/approach

Based on experts' opinions in risk analysis within the aeronautical sector, rules governing the relationship between severity, occurrence, detection and risk factor were defined. This served as input for developing a fuzzyfied FMEA tool using the Matlab Fuzzy Logic Toolbox. The tool was applied to the sealing process in a company within the aeronautical sector, using triangular and trapezoidal membership functions, and the results were compared with the traditional FMEA approach.

Findings

The results of the comparative application of traditional FMEA and fuzzyfied FMEA using triangular and trapezoidal functions have yielded valuable insights into risk analysis. The findings indicated that fuzzyfied FMEA maintained coherence with the traditional analysis in identifying higher-risk effects, aligning with the prioritization of critical failure modes. Additionally, fuzzyfied FMEA allowed for a more refined prioritization by accounting for variations in each variable through fuzzy rules, thereby improving the accuracy of risk analysis and providing a more realistic representation of potential hazards. The application of the developed fuzzyfied FMEA approach showed promise in enhancing risk assessment in the aeronautical sector by considering uncertainties and offering a more detailed and context-specific analysis compared to conventional FMEA.

Practical implications

This study emphasizes the potential of fuzzyfied FMEA in enhancing risk assessment by accurately identifying critical failure modes and providing a more realistic representation of potential hazards. The application case reveals that the proposed tool can be integrated with expert knowledge to improve decision-making processes and risk mitigation strategies within the aeronautical industry. Due to its straightforward approach, this facilitating methodology could also prove beneficial in other industrial sectors.

Originality/value

This paper presents the development and application of a facilitating methodology for implementing Fuzzy FMEA, comparing it with the traditional approach and incorporating variations using triangular and trapezoidal functions. This proposed methodology uses the Toolbox Fuzzy Logic of Matlab to create a fuzzyfied FMEA tool, enabling a more nuanced and context-specific risk analysis by considering uncertainties.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 12 September 2023

Javad Gerami, Mohammad Reza Mozaffari, Peter Wanke and Yong Tan

This study aims to present the cost and revenue efficiency evaluation models in data envelopment analysis in the presence of fuzzy inputs, outputs and their prices that the prices…

Abstract

Purpose

This study aims to present the cost and revenue efficiency evaluation models in data envelopment analysis in the presence of fuzzy inputs, outputs and their prices that the prices are also fuzzy. This study applies the proposed approach in the energy sector of the oil industry.

Design/methodology/approach

This study proposes a value-based technology according to fuzzy input-cost and revenue-output data, and based on this technology, the authors propose an approach to calculate fuzzy cost and revenue efficiency based on a directional distance function approach. These papers incorporated a decision-maker’s (DM) a priori knowledge into the fuzzy cost (revenue) efficiency analysis.

Findings

This study shows that the proposed approach obtains the components of fuzzy numbers corresponding to fuzzy cost efficiency scores in the interval [0, 1] corresponding to each of the decision-making units (DMUs). The models presented in this paper satisfies the most important properties: translation invariance, translation invariance, handle with negative data. The proposed approach obtains the fuzzy efficient targets corresponding to each DMU.

Originality/value

In the proposed approach, by selecting the appropriate direction vector in the model, we can incorporate preference information of the DM in the process of evaluating fuzzy cost or revenue efficiency and this shows the efficiency of the method and the advantages of the proposed model in a fully fuzzy environment.

Details

Journal of Modelling in Management, vol. 19 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 24 March 2023

Ashti Yaseen Hussein and Faris Ali Mustafa

Spaciousness is defined as “the feeling of openness or room to wander” that has been affected by various physical factors. The purpose of this paper is to assess the spaciousness…

Abstract

Purpose

Spaciousness is defined as “the feeling of openness or room to wander” that has been affected by various physical factors. The purpose of this paper is to assess the spaciousness of space to determine how spacious the space is. Furthermore, the study intends to propose a fuzzy-based model to assess the degree of spaciousness in terms of physical parameters such as area, proportion, the ratio of window area to floor area and color value.

Design/methodology/approach

Fuzzy logic is the most appropriate mathematical model to assess uncertainty using nonhomogeneous variables. In contrast to conventional methods, fuzzy logic depends on partial truth theory. MATLAB Fuzzy Logic Toolbox was used as a computational model including a fuzzy inference system (FIS) using linguistic variables called membership functions to define parameters. As a result, fuzzy logic was used in this study to assess the spaciousness degree of design studios in universities in the Iraqi Kurdistan region.

Findings

The findings of the presented fuzzy model show the degree to which the input variables affect a space perceived as larger and more spacious. The relationship between parameters has been represented in three-dimensional surface diagrams. The positive relationship of spaciousness with the area, window-to-floor area ratio and color value has been determined. In contrast, the negative relationship between spaciousness and space proportion is described. Moreover, the three-dimensional surface diagram illustrates how the changes in the input values affect the spaciousness degree. Besides, the improvement in the spaciousness degree of the design studio increases the quality learning environment.

Originality/value

This study attempted to assess the degree of spaciousness in design studios. There has been no attempt carried out to combine educational space learning environments and computational methods. This study focused on the assessment of spaciousness using the MATLAB Fuzzy Logic toolbox that has not been integrated so far.

Details

Open House International, vol. 49 no. 1
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 18 September 2023

Jianxiang Qiu, Jialiang Xie, Dongxiao Zhang and Ruping Zhang

Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal…

Abstract

Purpose

Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal hyperplane, which results in its sensitivity to noise. To solve this problem, this study proposes a twin support vector machine model based on fuzzy systems (FSTSVM).

Design/methodology/approach

This study designs an effective fuzzy membership assignment strategy based on fuzzy systems. It describes the relationship between the three inputs and the fuzzy membership of the sample by defining fuzzy inference rules and then exports the fuzzy membership of the sample. Combining this strategy with TSVM, the FSTSVM is proposed. Moreover, to speed up the model training, this study employs a coordinate descent strategy with shrinking by active set. To evaluate the performance of FSTSVM, this study conducts experiments designed on artificial data sets and UCI data sets.

Findings

The experimental results affirm the effectiveness of FSTSVM in addressing binary classification problems with noise, demonstrating its superior robustness and generalization performance compared to existing learning models. This can be attributed to the proposed fuzzy membership assignment strategy based on fuzzy systems, which effectively mitigates the adverse effects of noise.

Originality/value

This study designs a fuzzy membership assignment strategy based on fuzzy systems that effectively reduces the negative impact caused by noise and then proposes the noise-robust FSTSVM model. Moreover, the model employs a coordinate descent strategy with shrinking by active set to accelerate the training speed of the model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 7 April 2023

Venkateswarlu Nalluri, Richard G. Mayopu and Long-Sheng Chen

Due to the high use of mobile devices, the market share of mobile advertisements (Ads) is significantly growing. Although mobile Ads can contact potential customers at any time…

Abstract

Purpose

Due to the high use of mobile devices, the market share of mobile advertisements (Ads) is significantly growing. Although mobile Ads can contact potential customers at any time and in any location depending on their unique demands, one of the biggest problems for advertisers is how to improve customer repurchases with their Ads. The development and empirical support of customer repurchase through mobile Ads context have not been addressed. Therefore, the purpose of this paper is to define and identify the key attributes of customer repurchase in a mobile Ads context.

Design/methodology/approach

In this research, the set of attributes was derived from a systematic literature review and finalized by applying the Fuzzy Delphi method. To develop a hierarchical model and classify the cause/effect groups among identified key attributes, the Fuzzy mixed approach uses a combination of Fuzzy interpretive structural modeling-decision-making trial and evaluation laboratory.

Findings

The findings suggest that language, type of website and social media are classified to as essential attributes for improving customer repurchase through mobile Ads.

Research limitations/implications

The focus of the current research is limited to identify and develop the hierarchical interrelationships between customer repurchase attributes that are unique to the mobile Ads business context. Additional research may be conducted for various media contexts and other products/services categories.

Originality/value

This study illustrated how multicriteria decision-making techniques could be used effectively using Fuzzy theory to explore the research area of customer repurchase in mobile Ads concept.

Details

Journal of Modelling in Management, vol. 19 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 16 November 2023

Asma-Qamaliah Abdul-Hamid, Mohd Helmi Ali, Lokhman Hakim Osman, Ming-Lang Tseng and Ahmad Raflis Che Omar

This paper aims to contribute significantly to the empirical investigations on adopting Industry 4.0–circular economy in the Malaysian palm oil industry. The paper also aims to…

Abstract

Purpose

This paper aims to contribute significantly to the empirical investigations on adopting Industry 4.0–circular economy in the Malaysian palm oil industry. The paper also aims to theorise and empirically assess a comprehensive model incorporating three aspects and 51 criteria.

Design/methodology/approach

A two-stage methodology is proposed using the fuzzy Delphi method and the fuzzy-based analytical network process. Twenty-seven criteria on adoptability of industry 4.0–circular economy were selected for the first-stage methodology, followed by identifying each criteria's intersection with the overall objectives.

Findings

The findings indicate that financial constraints, the lack of a collaborative I4.0–CE model, laws and policy, low management support and the training of dedicated employers in I4.0–CE-application are the top five criteria requiring critical attention from the POI.

Practical implications

The overall sustainability advantages of the POI are identified and discussed in depth to establish criteria for industry 4.0–circular economy applications.

Originality/value

This study fills the previous research gap by theoretically explaining POI's industry 4.0 adoption–circular economy from the perspective of two underpinning theories. Due to the pressure towards sustainability, the industry must be ready to adopt industry 4.0–circular economy applications, and resources must be managed appropriately and effectively by sharing and integrating. Advanced industry 4.0 technologies and pragmatic practices such as a circular economy are needed to achieve optimal sustainable development while retaining commercial success.

Details

Industrial Management & Data Systems, vol. 124 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 8 February 2024

Kayode Kolawole Eluwole, Taiwo Temitope Lasisi, M. Omar Parvez and Cihan Cobanoglu

Fuzzy-set qualitative comparative analysis (fsQCA) is explored as a transformative tool rooted in complexity theory, shedding light on uncertainties shaping real-world decisions…

Abstract

Purpose

Fuzzy-set qualitative comparative analysis (fsQCA) is explored as a transformative tool rooted in complexity theory, shedding light on uncertainties shaping real-world decisions in tourism, with a focus on its application in the hospitality domain.

Design/methodology/approach

This study systematically evaluates fsQCA’s application in hospitality and tourism research, employing bibliometric analysis to scrutinize the published literature since its induction in 2011. The research seeks to understand the evolving usage by qualitatively reviewing impactful studies based on total citations.

Findings

The study reveals the ascendancy of fsQCA as a predominant approach in hospitality and tourism studies, particularly in illuminating decision-making paradigms in key sectors like destination and hotel selections and entrepreneurial orientations. However, an absence of fsQCA applications in gastronomy and wine tourism is identified, signaling uncharted territories for future inquiry.

Research limitations/implications

Theoretical implications include paradigm shifts to complexity theory, configural analysis and asymmetric algorithms. Practical implications involve improved decision-making and tailored marketing, benefiting industry practitioners. Limitations include potential academic bias, while future research suggests exploring sub-sectors, sustainability and emerging technologies.

Originality/value

This study identifies gaps in the fsQCA application and pioneers its examination within the hospitality domain, offering a unique perspective on understanding intricate relationships and configurations among variables. The study emphasizes the efficacy of asymmetric methodologies in elucidating behavioral nuances in hospitality and tourism, providing a foundation for future inquiries to expand horizons and unravel the nuanced applications of fsQCA in this research domain.

Details

Journal of Hospitality and Tourism Insights, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9792

Keywords

Article
Publication date: 31 July 2023

Dinesh Kumar Kushwaha, Dilbagh Panchal and Anish Sachdeva

To meet energy demand and tackle the challenges posed by global warming, Bagasse-based Cogeneration Power Generation (BCPG) plant in sugar mills have tremendous potential due to…

Abstract

Purpose

To meet energy demand and tackle the challenges posed by global warming, Bagasse-based Cogeneration Power Generation (BCPG) plant in sugar mills have tremendous potential due to large-scale supply of renewable fuel called bagasse. To meet this goal, an integrated framework has been proposed for analyzing performance issues of BCPG.

Design/methodology/approach

Intuitionistic Fuzzy Lambda-Tau (IFLT) approach was implemented to compute various reliability parameters. Intuitionistic Fuzzy Failure Mode and Effect Analysis (IF-FMEA) approach has been implemented for studying risk issues results in decrease in plant's availability. Moreover, IF- Technique for Order Performance by Similarity to Ideal Solution (IF-TOPSIS) is implemented to verify accuracy of IF-FMEA approach.

Findings

For membership and non-membership functions, availability decreases to 0.0006% and 0.0020% respectively for spread ±15% to ±30%, and further decreases to 0.0127% and 0.0221% for spread ±30% to ±45%. Under risk assessment failure causes namely Storage tank (ST3), Valve (VL6), Transfer pump (TF8), Deaerator tank (DT11), High pressure heater and economiser (HP15), Boiler drum and super heater (BS22), Forced draft and Secondary air fan (FS25), Air preheater (AH29) and Furnace (FR31) with Intuitionistic Fuzzy Hybrid Weighted Euclidean Distance (IFHWED) based output scores – 0.8988, 0.9752, 0.9400, 0.8988, 0.9267, 1.1131, 1.0039, 0.8185, 1.0604 were identified as the most critical failure causes.

Research limitations/implications

Reliability and risk analysis results derived from IFLT and IF-FMEA approaches respectively, to address the performance issues of BCPG is based on the quantitative and qualitative data collected from the industrial experts and maintenance log book. Moreover, to take care of hesitation in expert's knowledge, IF theory-based concept is incorporated so as to achieve more accuracy in analysis results. Reliability and risk analysis results together will be helpful in analyzing the performance characteristics and diagnosis of critical failure causes, which will minimize frequent failure in BCPG.

Practical implications

The framework will help plant managers to frame optimal maintenance policy in order to enhance the operational aspects of the considered unit. Moreover, the accurate and early detection of failure causes will also help managers to take prudent decision for smooth operation of plant.

Social implications

The results obtained ensure continuous operation of plant by utilizing the bagasse as fuel in boiler and also mitigate the wastages of fuel. If this bagasse (green fuel) is not properly utilized, there remains a dependency on coal-based power plants to meet the power demand. The results obtained are useful for decreasing dependency on coal, and promoting bagasse as the green, and alternative fuel, the emission by burning of these fuels are not harmful for environment and thereby contribute in preventing the environment from harmful effect of GHGs gases.

Originality/value

IFLT approach has been implemented to develop reliability modeling equations of the BCPG unit, and furthermore to compute various reliability parameters for both membership and non-membership function. The ranking results of IF-FMEA are compared to IF-TOPSIS approach. Sensitivity analysis is done to check stability of proposed framework.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of 859