Search results

1 – 10 of over 1000
Article
Publication date: 12 September 2023

Javad Gerami, Mohammad Reza Mozaffari, Peter Wanke and Yong Tan

This study aims to present the cost and revenue efficiency evaluation models in data envelopment analysis in the presence of fuzzy inputs, outputs and their prices that the prices…

Abstract

Purpose

This study aims to present the cost and revenue efficiency evaluation models in data envelopment analysis in the presence of fuzzy inputs, outputs and their prices that the prices are also fuzzy. This study applies the proposed approach in the energy sector of the oil industry.

Design/methodology/approach

This study proposes a value-based technology according to fuzzy input-cost and revenue-output data, and based on this technology, the authors propose an approach to calculate fuzzy cost and revenue efficiency based on a directional distance function approach. These papers incorporated a decision-maker’s (DM) a priori knowledge into the fuzzy cost (revenue) efficiency analysis.

Findings

This study shows that the proposed approach obtains the components of fuzzy numbers corresponding to fuzzy cost efficiency scores in the interval [0, 1] corresponding to each of the decision-making units (DMUs). The models presented in this paper satisfies the most important properties: translation invariance, translation invariance, handle with negative data. The proposed approach obtains the fuzzy efficient targets corresponding to each DMU.

Originality/value

In the proposed approach, by selecting the appropriate direction vector in the model, we can incorporate preference information of the DM in the process of evaluating fuzzy cost or revenue efficiency and this shows the efficiency of the method and the advantages of the proposed model in a fully fuzzy environment.

Details

Journal of Modelling in Management, vol. 19 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 28 April 2023

Daas Samia and Innal Fares

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…

Abstract

Purpose

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.

Design/methodology/approach

The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.

Findings

A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.

Research limitations/implications

This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.

Originality/value

Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 2 January 2023

Jitendra Sharma and Bibhuti Bhusan Tripathy

Supplier evaluation and selection is an essential (multi-criteria decision-making) MCDM process that considers qualitative and quantitative factors. This research work attempts to…

Abstract

Purpose

Supplier evaluation and selection is an essential (multi-criteria decision-making) MCDM process that considers qualitative and quantitative factors. This research work attempts to use a MCDM technique based on merging fuzzy Technique for Order Preference by Similarity to Ideal Solution (F-TOPSIS) and Quality Function Deployment (QFD) ideas. The study attempts to find the supplier's attributes (HOWs) to accomplish its goals after determining the product's characteristics to suit the company's needs (WHATs).

Design/methodology/approach

The proposed research methodology comprises the following four steps: Step 1: Determine the product purchase requirements (“WHATs”) and those pertinent to supplier evaluation (“HOWs”). In Step 2, the relative importance of the “WHAT-HOW” correlation scores is determined and also the resulting weights of “HOWs”. In Step 3, linguistic evaluations of possible suppliers in comparison to subjective criteria are given to the decision-makers. Step 4 combines the QFD and F-TOPSIS techniques to select suppliers.

Findings

A fuzzy MCDM method based on fusing and integrating fuzzy information and QFD is presented to solve the drawbacks of conventional decision-making strategies used in supplier selection. Using the F-TOPSIS method, fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS), the relative closeness coefficient values for all alternatives are computed. The suppliers are ranked by relating the closeness of coefficient values. This method permits the combination of ambiguous and subjective data expressed as fuzzy-defined integers or linguistic variables.

Originality/value

QFD and TOPSIS, two widely used approaches, are combined in this article to rank and evaluate suppliers based on the traits that the suppliers choose to prioritize. This study demonstrates that the method employed could address multiple-criteria decision-making scenarios in a computationally efficient manner. The effectiveness and applicability of the method are illustrated using an example.

Details

The TQM Journal, vol. 35 no. 8
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 13 October 2022

Masoud Shayganmehr, Anil Kumar, Jose Arturo Garza-Reyes and Edmundas Kazimieras Zavadskas

In this study, a novel framework was proposed to assess the trust in e-government (e-Gov) services under an uncertain environment. The proposed framework was applied in Iranian…

Abstract

Purpose

In this study, a novel framework was proposed to assess the trust in e-government (e-Gov) services under an uncertain environment. The proposed framework was applied in Iranian municipality websites of e-Gov services to evaluate the readiness score of trust in e-Gov services.

Design/methodology/approach

A unique hybrid research methodology was proposed. In the first phase, a comprehensive set of indices were determined from an extensive literature review and finalized by employing the fuzzy Delphi method. In the second phase, interval-valued intuitionistic fuzzy set (IVIFS) -was utilized to model the problem's uncertainty with analytic called IVIFS- hierarchy process (AHP) to determine the importance of indices and indicators by assigning the weights. In the third phase, the fuzzy evaluation method (FEM) is followed for assessing the readiness score of indices in case studies.

Findings

The findings indicated that “Trust in government” is the most significant index affecting citizen's trust in e-Gov services while “Maintenance and support” has the least impact on user's intention to use e–Gov services.

Research limitations/implications

The study contributes by introducing a unique research methodology that integrates three phases, including fuzzy Delphi, IVIFS AHP and fuzzy evaluation method. Moreover, the fuzzy sets theory helps to reach a more accurate result by modeling the inherent ambiguity of indicators and indices. Interval-valued intuitionistic fuzzy models the ambiguity of experts' judgments in an interval.

Practical implications

The study helps policy makers to monitor wider aspects of trust in e-Gov services as well as understanding their importance. The study enables policy makers to apply the framework to any potential case studies to evaluate the readiness score of indices and recognizing strengths and weakness of trust dimensions as well as recommending advice for improving the situation.

Originality/value

The study is one of the few to indicate significant indices of trust in e-Gov services in developing countries. The study shows the importance of indicators and indices by assigning a weight. Additionally, the framework can assess the readiness score of various case studies.

Details

Information Technology & People, vol. 36 no. 7
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 24 October 2023

Bianca Arcifa de Resende, Franco Giuseppe Dedini, Jony Javorsky Eckert, Tiago F.A.C. Sigahi, Jefferson de Souza Pinto and Rosley Anholon

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy…

Abstract

Purpose

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy variations, supported by a case application in the aeronautical sector.

Design/methodology/approach

Based on experts' opinions in risk analysis within the aeronautical sector, rules governing the relationship between severity, occurrence, detection and risk factor were defined. This served as input for developing a fuzzyfied FMEA tool using the Matlab Fuzzy Logic Toolbox. The tool was applied to the sealing process in a company within the aeronautical sector, using triangular and trapezoidal membership functions, and the results were compared with the traditional FMEA approach.

Findings

The results of the comparative application of traditional FMEA and fuzzyfied FMEA using triangular and trapezoidal functions have yielded valuable insights into risk analysis. The findings indicated that fuzzyfied FMEA maintained coherence with the traditional analysis in identifying higher-risk effects, aligning with the prioritization of critical failure modes. Additionally, fuzzyfied FMEA allowed for a more refined prioritization by accounting for variations in each variable through fuzzy rules, thereby improving the accuracy of risk analysis and providing a more realistic representation of potential hazards. The application of the developed fuzzyfied FMEA approach showed promise in enhancing risk assessment in the aeronautical sector by considering uncertainties and offering a more detailed and context-specific analysis compared to conventional FMEA.

Practical implications

This study emphasizes the potential of fuzzyfied FMEA in enhancing risk assessment by accurately identifying critical failure modes and providing a more realistic representation of potential hazards. The application case reveals that the proposed tool can be integrated with expert knowledge to improve decision-making processes and risk mitigation strategies within the aeronautical industry. Due to its straightforward approach, this facilitating methodology could also prove beneficial in other industrial sectors.

Originality/value

This paper presents the development and application of a facilitating methodology for implementing Fuzzy FMEA, comparing it with the traditional approach and incorporating variations using triangular and trapezoidal functions. This proposed methodology uses the Toolbox Fuzzy Logic of Matlab to create a fuzzyfied FMEA tool, enabling a more nuanced and context-specific risk analysis by considering uncertainties.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 February 2024

Swarup Mukherjee, Anupam De and Supriyo Roy

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk…

Abstract

Purpose

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk prioritization uses a risk priority number (RPN) aligned to the risk analysis. Imprecise information coupled with a lack of dealing with hesitancy margins enlarges the scope, leading to improper assessment of risks. This significantly affects monitoring quality and performance. Against the backdrop, a methodology that identifies and prioritizes the operational supply chain risk factors signifies better risk assessment.

Design/methodology/approach

The study proposes a multi-criteria model for risk prioritization involving multiple decision-makers (DMs). The methodology offers a robust, hybrid system based on the Intuitionistic Fuzzy (IF) Set merged with the “Technique for Order Performance by Similarity to Ideal Solution.” The nature of the model is robust. The same is shown by applying fuzzy concepts under multi-criteria decision-making (MCDM) to prioritize the identified business risks for better assessment.

Findings

The proposed IF Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) for risk prioritization model can improve the decisions within organizations that make up the chains, thus guaranteeing a “better quality in risk management.” Establishing an efficient representation of uncertain information related to traditional failure mode and effects analysis (FMEA) treatment involving multiple DMs means identifying potential risks in advance and providing better supply chain control.

Research limitations/implications

In a company’s supply chain, blockchain allows data storage and transparent transmission of flows with traceability, privacy, security and transparency (Roy et al., 2022). They asserted that blockchain technology has great potential for traceability. Since risk assessment in supply chain operations can be treated as a traceability problem, further research is needed to use blockchain technologies. Lastly, issues like risk will be better assessed if predicted well; further research demands the suitability of applying predictive analysis on risk.

Practical implications

The study proposes a hybrid framework based on the generic risk assessment and MCDM methodologies under a fuzzy environment system. By this, the authors try to address the supply chain risk assessment and mitigation framework better than the conventional one. To the best of their knowledge, no study is found in existing literature attempting to explore the efficacy of the proposed hybrid approach over the traditional RPN system in prime sectors like steel (with production planning data). The validation experiment indicates the effectiveness of the results obtained from the proposed IF TOPSIS Approach to Risk Prioritization methodology is more practical and resembles the actual scenario compared to those obtained using the traditional RPN system (Kim et al., 2018; Kumar et al., 2018).

Originality/value

This study provides mathematical models to simulate the supply chain risk assessment, thus helping the manufacturer rank the risk level. In the end, the authors apply this model in a big-sized organization to validate its accuracy. The authors validate the proposed approach to an integrated steel plant impacting the production planning process. The model’s outcome substantially adds value to the current risk assessment and prioritization, significantly affecting better risk management quality.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 April 2024

Gul Imamoglu, Ertugrul Ayyildiz, Nezir Aydin and Y. Ilker Topcu

Blood availability is critical for saving lives in various healthcare services. Ensuring blood availability can only be achieved through efficient management of the blood supply…

Abstract

Purpose

Blood availability is critical for saving lives in various healthcare services. Ensuring blood availability can only be achieved through efficient management of the blood supply chain (BSC). A key component of the BSC is bloodmobiles, which are responsible for a significant portion of blood donation collections. The most crucial factor affecting the efficacy of bloodmobiles is their location selection. Therefore, detailed decision analyses are essential for the location selection of bloodmobiles. This study proposes a comprehensive approach to bloodmobile location selection for resilient BSCs.

Design/methodology/approach

This study provides a novel integration of the spherical fuzzy analytical hierarchy process (SF-AHP) and spherical fuzzy complex proportional assessment (SF-COPRAS) methodologies. In this framework, the criteria are weighted using SF-AHP. The alternatives are then evaluated using SF-COPRAS, employing criteria weights obtained from SF-AHP without defuzzification.

Findings

The results show that supply conditions and resilience are the most important criteria for a bloodmobile location selection. Additionally, the validation analyses confirm the stability of the solution.

Practical implications

This study presents several managerial implications that can aid mid-level managers in the BSC during the decision-making process for bloodmobile location selection. The critical factors revealed, along with their importance in choosing bloodmobile locations, serve as a comprehensive guide. Additionally, the framework proposed in this study offers decision-makers (DMs) an effective method for ranking potential bloodmobile locations.

Originality/value

This study presents the first application of multi-criteria decision-making (MCDM) for bloodmobile location selection. In this manner, several aspects of bloodmobile location selection are considered for the first time in the existing literature. Furthermore, from the methodological aspect, this study provides a novel SF-AHP-integrated SF-COPRAS methodology.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 8 August 2022

Ahmet Aytekin, Ömer Faruk Görçün, Fatih Ecer, Dragan Pamucar and Çağlar Karamaşa

Pharmaceutical supply chains (PSCs) need a well-operating and faultless logistics system to successfully store and distribute their medicines. Hospitals, health institutes, and…

Abstract

Purpose

Pharmaceutical supply chains (PSCs) need a well-operating and faultless logistics system to successfully store and distribute their medicines. Hospitals, health institutes, and pharmacies must maintain extra stock to respond requirements of the patients. Nevertheless, there is an inverse correlation between the level of medicine stock and logistics service level. The high stock level held by health institutions indicates that we have not sufficiently excellent logistics systems presently. As such, selecting appropriate logistics service providers (drug distributors) is crucial and strategic for PSCs. However, this is difficult for decision-makers, as highly complex situations and conflicting criteria influence such evaluation processes. So, a robust, applicable, and strong methodological frame is required to solve these decision-making problems.

Design/methodology/approach

To achieve this challenging issue, the authors develop and apply an integrated entropy-WASPAS methodology with Fermatean fuzzy sets for the first time in the literature. The evaluation process takes place in two stages, as in traditional multi-criteria problems. In the first stage, the importance levels of the criteria are determined by the FF-entropy method. Afterwards, the FF-WASPAS approach ranks the alternatives.

Findings

The feasibility of the proposed model is also supported by a case study where six companies are evaluated comprehensively regarding ten criteria. Herewith, total warehouse capacity, number of refrigerated vehicles, and personnel are the top three criteria that significantly influence the evaluation of pharmaceutical distribution and warehousing companies. Further, a comprehensive sensitivity analysis proves the robustness and effectiveness of the proposed approach.

Practical implications

The proposed multi-attribute decision model quantitatively aids managers in selecting logistics service providers considering imprecisions in the multi-criteria decision-making process.

Originality/value

A new model has been developed to present a sound mathematical model for selecting logistics service providers consisting of Fermatean fuzzy entropy and WASPAS methods. The paper's main contribution is presenting a comprehensive and more robust model for the ex ante evaluation and ranking of providers.

Article
Publication date: 24 October 2022

Chaoyu Zheng, Benhong Peng, Xuan Zhao, Guo Wei, Anxia Wan and Mu Yue

How to identify the critical success factors (CSFs) of public health emergencies (PHEs) is of great practical significance to carry out a scientific and effective risk assessment…

Abstract

Purpose

How to identify the critical success factors (CSFs) of public health emergencies (PHEs) is of great practical significance to carry out a scientific and effective risk assessment. The purpose of this paper is to address this issue.

Design/methodology/approach

In this paper, the authors propose a new approach to identify the CSFs by hesitant fuzzy linguistic set and a Decision-Making Trial and Evaluation Laboratory (DEMATEL) approach. First, a larger group of experts are clustered into three groups according to similarity degree. Then, the weight of each cluster is determined by the maximum consensus method, and the overall direct influence matrix is obtained by clustering with hesitant fuzzy linguistic weighted geometric (HFLWG) operators. Finally, the overall direct influence matrix is transformed into the crisp direct impact matrix by the score function, and 11 CSFs of PHEs are identified by using the extended DEMATEL method.

Findings

In addition, an example of PHEs shows that the approach has good identification applicability. The approach can be used to solve the problems of fuzziness and subjectivity in linguistic assessments, and it can be applied to identify the customer service framework with the linguistic assessments process in emergency management.

Originality/value

This paper extends the above DEMATEL method to study in the hesitant fuzzy linguistic context. This proposed hybrid approach has a wider application in the high-risk area where disasters frequently occur.

Details

Aslib Journal of Information Management, vol. 75 no. 6
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 1 May 2023

Hajar Regragui, Naoufal Sefiani, Hamid Azzouzi and Naoufel Cheikhrouhou

Hospital structures serve to protect and improve public health; however, they are recognized as a major source of environmental degradation. Thus, an effective performance…

Abstract

Purpose

Hospital structures serve to protect and improve public health; however, they are recognized as a major source of environmental degradation. Thus, an effective performance evaluation framework is required to improve hospital sustainability. In this context, this study presents a holistic methodology that integrates the sustainability balanced scorecard (SBSC) with fuzzy Delphi method and fuzzy multi-criteria decision-making approaches for evaluating the sustainability performance of hospitals.

Design/methodology/approach

Initially, a comprehensive list of relevant sustainability evaluation criteria was considered based on six SBSC-based dimensions, in line with triple-bottom-line sustainability dimensions, and derived from the literature review and experts’ opinions. Then, the weights of perspectives and their respective criteria are computed and ranked utilizing the fuzzy analytic hierarchy process. Subsequently, the hospitals’ sustainable performance values are ranked based on these criteria using the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution.

Findings

A numerical application was conducted in six public hospitals to exhibit the proposed model’s applicability. The results of this study revealed that “Patient satisfaction,” “Efficiency,” “Effectiveness,” “Access to care” and “Waste production,” respectively, are the five most important criteria of sustainable performance.

Practical implications

The new model will provide decision-makers with management tools that may help them identify the relevant factors for upgrading the level of sustainability in their hospitals and thus improve public health and community well-being.

Originality/value

This is the first study that proposes a new hybrid decision-making methodology for evaluating and comparing hospitals’ sustainability performance under a fuzzy environment.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 3
Type: Research Article
ISSN: 1741-0401

Keywords

1 – 10 of over 1000