Search results

1 – 10 of over 1000
Article
Publication date: 17 April 2023

Ashlyn Maria Mathai and Mahesh Kumar

In this paper, a mixture of exponential and Rayleigh distributions in the proportions α and 1 − α and all the parameters in the mixture distribution are estimated based on fuzzy…

Abstract

Purpose

In this paper, a mixture of exponential and Rayleigh distributions in the proportions α and 1 − α and all the parameters in the mixture distribution are estimated based on fuzzy data.

Design/methodology/approach

The methods such as maximum likelihood estimation (MLE) and method of moments (MOM) are applied for estimation. Fuzzy data of triangular fuzzy numbers and Gaussian fuzzy numbers for different sample sizes are considered to illustrate the resulting estimation and to compare these methods. In addition to this, the obtained results are compared with existing results for crisp data in the literature.

Findings

The application of fuzziness in the data will be very useful to obtain precise results in the presence of vagueness in data. Mean square errors (MSEs) of the resulting estimators are computed using crisp data and fuzzy data. On comparison, in terms of MSEs, it is observed that maximum likelihood estimators perform better than moment estimators.

Originality/value

Classical methods of obtaining estimators of unknown parameters fail to give realistic estimators since these methods assume the data collected to be crisp or exact. Normally, such case of precise data is not always feasible and realistic in practice. Most of them will be incomplete and sometimes expressed in linguistic variables. Such data can be handled by generalizing the classical inference methods using fuzzy set theory.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 February 2024

Swarup Mukherjee, Anupam De and Supriyo Roy

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk…

Abstract

Purpose

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk prioritization uses a risk priority number (RPN) aligned to the risk analysis. Imprecise information coupled with a lack of dealing with hesitancy margins enlarges the scope, leading to improper assessment of risks. This significantly affects monitoring quality and performance. Against the backdrop, a methodology that identifies and prioritizes the operational supply chain risk factors signifies better risk assessment.

Design/methodology/approach

The study proposes a multi-criteria model for risk prioritization involving multiple decision-makers (DMs). The methodology offers a robust, hybrid system based on the Intuitionistic Fuzzy (IF) Set merged with the “Technique for Order Performance by Similarity to Ideal Solution.” The nature of the model is robust. The same is shown by applying fuzzy concepts under multi-criteria decision-making (MCDM) to prioritize the identified business risks for better assessment.

Findings

The proposed IF Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) for risk prioritization model can improve the decisions within organizations that make up the chains, thus guaranteeing a “better quality in risk management.” Establishing an efficient representation of uncertain information related to traditional failure mode and effects analysis (FMEA) treatment involving multiple DMs means identifying potential risks in advance and providing better supply chain control.

Research limitations/implications

In a company’s supply chain, blockchain allows data storage and transparent transmission of flows with traceability, privacy, security and transparency (Roy et al., 2022). They asserted that blockchain technology has great potential for traceability. Since risk assessment in supply chain operations can be treated as a traceability problem, further research is needed to use blockchain technologies. Lastly, issues like risk will be better assessed if predicted well; further research demands the suitability of applying predictive analysis on risk.

Practical implications

The study proposes a hybrid framework based on the generic risk assessment and MCDM methodologies under a fuzzy environment system. By this, the authors try to address the supply chain risk assessment and mitigation framework better than the conventional one. To the best of their knowledge, no study is found in existing literature attempting to explore the efficacy of the proposed hybrid approach over the traditional RPN system in prime sectors like steel (with production planning data). The validation experiment indicates the effectiveness of the results obtained from the proposed IF TOPSIS Approach to Risk Prioritization methodology is more practical and resembles the actual scenario compared to those obtained using the traditional RPN system (Kim et al., 2018; Kumar et al., 2018).

Originality/value

This study provides mathematical models to simulate the supply chain risk assessment, thus helping the manufacturer rank the risk level. In the end, the authors apply this model in a big-sized organization to validate its accuracy. The authors validate the proposed approach to an integrated steel plant impacting the production planning process. The model’s outcome substantially adds value to the current risk assessment and prioritization, significantly affecting better risk management quality.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 August 2023

Ritu Arora, Anand Chauhan, Anubhav Pratap Singh and Renu Sharma

Good management strives to align and corporate processes for more attention being paid to supply chain management. Firms realize that greater co-operation and improved…

55

Abstract

Purpose

Good management strives to align and corporate processes for more attention being paid to supply chain management. Firms realize that greater co-operation and improved coordination can help to manage the entire supply chain more efficiently. The imperfect quality item is one of the most important issues that affect the expected profit of green supply chain. The imprecise cost with screening process of poor quality items posed in supply chain is the subject of this study.

Design/methodology/approach

The present study explores production model for imperfect items having uncertain cost parameters with three-layer supply chain encompassing supplier, manufacturer and retailer. The model is considering the impact of business tactics such as order size, production rate, production cost and appropriate times in various sectors on collaborative marketing systems. Due to imprecise cost parameters, the pentagonal fuzzy numbers are set to fuzzify the total cost and defuzzifition by using graded mean integration.

Findings

This study offers an explicit condition in uncertain environment to manage the imperfect quality item to increase the potential profit of the supply chain. The influence of changes in parameter values on the optimal inventory policy under fuzziness is provided managerial insights.

Originality/value

This model makes a significant contribution to fuzzy inference. The results of the study provide a trading strategy for the industry to avoid losses. The prescribed study can be suitable for the industries like sculpture, jewelry, pottery, etc.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 9 June 2023

Nian Zhang, Shuo Zheng, Lingyuan Tian and Guiwu Wei

In the supply chain disruption risk, the issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Abstract

Purpose

In the supply chain disruption risk, the issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Design/methodology/approach

Considering the influence of irrational emotions of decision makers, an evaluation model is designed by the regret theory and VIKOR method, which makes the decision-making process closer to reality.

Findings

The paper has some innovations in the evaluation index system and evaluation model construction. The method has good stability under the risk of supply chain interruption.

Originality/value

The mixed evaluation information is used to describe the attributes, and the evaluation index system is constructed by the combined method of the social network analysis method and the literature research method to ensure the accuracy and accuracy of the extracted attributes. The issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 April 2024

Gul Imamoglu, Ertugrul Ayyildiz, Nezir Aydin and Y. Ilker Topcu

Blood availability is critical for saving lives in various healthcare services. Ensuring blood availability can only be achieved through efficient management of the blood supply…

Abstract

Purpose

Blood availability is critical for saving lives in various healthcare services. Ensuring blood availability can only be achieved through efficient management of the blood supply chain (BSC). A key component of the BSC is bloodmobiles, which are responsible for a significant portion of blood donation collections. The most crucial factor affecting the efficacy of bloodmobiles is their location selection. Therefore, detailed decision analyses are essential for the location selection of bloodmobiles. This study proposes a comprehensive approach to bloodmobile location selection for resilient BSCs.

Design/methodology/approach

This study provides a novel integration of the spherical fuzzy analytical hierarchy process (SF-AHP) and spherical fuzzy complex proportional assessment (SF-COPRAS) methodologies. In this framework, the criteria are weighted using SF-AHP. The alternatives are then evaluated using SF-COPRAS, employing criteria weights obtained from SF-AHP without defuzzification.

Findings

The results show that supply conditions and resilience are the most important criteria for a bloodmobile location selection. Additionally, the validation analyses confirm the stability of the solution.

Practical implications

This study presents several managerial implications that can aid mid-level managers in the BSC during the decision-making process for bloodmobile location selection. The critical factors revealed, along with their importance in choosing bloodmobile locations, serve as a comprehensive guide. Additionally, the framework proposed in this study offers decision-makers (DMs) an effective method for ranking potential bloodmobile locations.

Originality/value

This study presents the first application of multi-criteria decision-making (MCDM) for bloodmobile location selection. In this manner, several aspects of bloodmobile location selection are considered for the first time in the existing literature. Furthermore, from the methodological aspect, this study provides a novel SF-AHP-integrated SF-COPRAS methodology.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 20 March 2023

Xu Zhang, Mark Goh, Sijun Bai and Zonghan Wang

Risk response decisions (RRDs) are vital for project risk mitigation. Although past research has focused on RRDs for independent single projects, it has scarcely explored how to…

Abstract

Purpose

Risk response decisions (RRDs) are vital for project risk mitigation. Although past research has focused on RRDs for independent single projects, it has scarcely explored how to make RRDs for single projects in project portfolios (SPPPs). Consequently, this study aims to bridge the gap in extant literature by developing an integrated approach to select risk response strategies (RRSs) for SPPPs considering objective adjustments and project interdependencies (PIs).

Design/methodology/approach

An integrated quality function deployment (QFD) method was used throughout this study. More so, a balanced score card (BSC) and stratified-Z-numbers-full consistency method (SZFUCOM) was applied to identify SPPP success criteria (SP3SC) to determine their weights. In addition, a spherical fuzzy set-design structure matrix (SFDSM) was used to quantify the correlation between the risks and the relationship between the risks and the predecessor projects. Consequently, the relationships between the risks and SP3SC and RRSs were described by the spherical fuzzy set (SFS) and Z-numbers, respectively. Besides, the results are weaved into QFD to transform SP3SC into risks and then into RRSs, while a linear optimization model is used to obtain the optimal RRSs. Lastly, a construction project portfolio (PP) was used to test the veracity of the results to prove their validity.

Findings

The approach to RRDs for single projects is observed to be different from that of SPPPs. In addition, this study finds that project portfolio objective adjustments (PPOAs) and PIs have significant impacts on RRDs given that they influence the risk priorities of independent single projects and SPPPs. Moreover, the application of an integrated QFD effectively synthesized the results from the findings of this study, as well as enabled companies to determine robust RRSs. Finally, the consistency results of the SZFUCOM were better than those of the triangular fuzzy number-full consistency method.

Originality/value

The study innovatively explores the method of RRDs for SPPP, which has been ignored by past research. SP3SC highly compatible with PP success is determined. Z-numbers are first used to evaluate the effect of RRSs to enhance the robustness of RRDs. The study proposes a method of RRDs comprehensively considering PPOAs and PIs, which provides robust methodological guidance for SPPP managers to control risks.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 July 2023

Irfan Ali, Vincent Charles, Umar Muhammad Modibbo, Tatiana Gherman and Srikant Gupta

The COVID-19 pandemic has caused significant disruptions to global supply chains (SCs), affecting the production, distribution, and transportation of goods and services. To…

Abstract

Purpose

The COVID-19 pandemic has caused significant disruptions to global supply chains (SCs), affecting the production, distribution, and transportation of goods and services. To mitigate these disruptions, it is essential to identify the barriers that have impeded the seamless operation of SCs. This study identifies these barriers and assesses their impact on supply chain network (SCN).

Design/methodology/approach

To determine the relative importance of different barriers and rank the affected industries, a hybrid approach was employed, combining the best-worst method (BWM) and the technique for order preference by similarity to an ideal solution (TOPSIS). To accommodate the inherent uncertainties associated with the pandemic, a triangular fuzzy TOPSIS was used to represent the linguistic variable ratings provided by decision-makers.

Findings

The study found that the airlines and hospitality industry was the most affected by the barriers, accounting for 46% of the total, followed by the healthcare industry (23%), the manufacturing industry (19%), and finally the consumer and retail industry (17%).

Research limitations/implications

This study is limited to the four critical industries and nine identified barriers. Other industries and barriers may have different weights and rankings. Nevertheless, the findings offer valuable insights for decision-makers in SC management, aiding them in mitigating the impact of COVID-19 on their operations and enhancing their resilience against future disruptions.

Originality/value

This study enhances understanding of COVID-19’s impact on SCN and provides a framework for assessing disruptions using multi-criteria decision-making processes. The hybrid approach of BWM and TOPSIS in a fuzzy environment is unique and offers potential applicability in various evaluation contexts.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 21 March 2023

J. Sreejith and P.G. Saleeshya

Rice is an important grain in Indian scenarios, and the purpose of the research work is to identify the attributes which can be the possible barriers in the traditional rice…

109

Abstract

Purpose

Rice is an important grain in Indian scenarios, and the purpose of the research work is to identify the attributes which can be the possible barriers in the traditional rice supply chain network.

Design/methodology/approach

A multilevel conceptual model is developed based on the literature review, and a field study is conducted by administering a questionnaire from the experts. Fuzzy logic methodology and a ranking score method is applied to identify the rice supply chain performance and the barriers of the traditional rice supply chain network.

Findings

The rice supply chain performance index for the traditional rice supply chain network is obtained, and the performance of the existing rice supply chain is found to be “fair”. The “information flow” is the attribute that can be a critical weak attribute in the traditional rice supply chain network. A proposed model of the blockchain technology-enabled rice supply chain network is developed as a solution for the “information flow” barrier.

Research limitations/implications

The present research work is focussed on the generalized rice supply chain model of the Indian scenario, and more detailed studies can be carried out based on the regional issues.

Originality/value

The rice supply chain plays an important role in Indian economic development, and hence the current research paper focusses on identifying the barriers and the performance of the existing rice supply chain network.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-0839

Keywords

Article
Publication date: 3 July 2023

Ozan Okudan, Murat Cevikbas and Zeynep Işık

The purpose of this paper is to propose a decision support framework that can be used by decision-makers to identify the most convenient disruption analysis (DA) methods for…

Abstract

Purpose

The purpose of this paper is to propose a decision support framework that can be used by decision-makers to identify the most convenient disruption analysis (DA) methods for megaprojects and their stakeholders.

Design/methodology/approach

The framework was initially developed by conducting a comprehensive literature review to obtain extensive knowledge about disruption management and megaprojects. Focus group discussion (FGD) sessions with the participation of the construction practitioners were then organized to validate and strengthen the findings of the literature review. Consequently, 17 selection factors were identified and categorized as requirement, ability and outcome. Lastly, the most convenient DA methods for megaprojects were identified by performing integrated fuzzy analytical hierarchy process (AHP) and fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) analysis. Additionally, consistency analysis was also conducted to verify the reliability of the results.

Findings

The results revealed that the measured mile method is the most appropriate DA method for megaprojects. In case the measured mile method cannot be adopted due to various technical and contractual reasons, the decision-makers are proposed to consider program analysis, work or trade sampling, earned value analysis and control chart method, respectively. Second, the selection factors such as “Comprehensible analysis procedure,” “Existing knowledge and experience about a particular DA method,” “Ability to resolve greater number of disruption events,” “Ability to resolve complex disruption events,” “Ability to exclude factors that are not under the owner's responsibility” and “General acceptance by practitioners, courts, and arbitration, etc.” were given the top priority by the experts, highlighting the critical aspects of the DA methods.

Originality/value

Disruption claims in megaprojects are very critical for the contractors to compensate for the losses stemming from disruption events. Although the effective use of DA methods maximizes the accuracy and reliability of disruption claims, decision-makers can barely implement these methods adequately since past studies neglect to present extensive knowledge about the most convenient DA methods for megaprojects. Thus, developing a decision support framework for the selection of DA methods, this study is the earliest attempt that examines the mechanisms and inherent differences of DA methods. Additionally, owing to the robustness and versatility of this research approach, the research approach could be replicated also for future studies focusing on other project-based industries since disruption is also a challenging issue for many other industries.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 July 2023

Haitao Wu, Wenyan Zhong, Botao Zhong, Heng Li, Jiadong Guo and Imran Mehmood

Blockchain has the potential to facilitate a paradigm shift in the construction industry toward effectiveness, transparency and collaboration. However, there is currently a…

Abstract

Purpose

Blockchain has the potential to facilitate a paradigm shift in the construction industry toward effectiveness, transparency and collaboration. However, there is currently a paucity of empirical evidence from real-world construction projects. This study aims to systematically review blockchain adoption barriers, investigate critical ones and propose corresponding solutions.

Design/methodology/approach

An integrated method was adopted in this research based on the technology–organization–environment (TOE) theory and fuzzy decision-making trial and evaluation laboratory (DEMATEL) approach. Blockchain adoption barriers were first presented using the TOE framework. Then, key barriers were identified based on the importance and causality analysis in the fuzzy DEMATEL. Several suggestions were proposed to facilitate blockchain diffusion from the standpoints of the government, the industry and construction organizations.

Findings

The results highlighted seven key barriers. Specifically, the construction industry is more concerned with environmental barriers, such as policy uncertainties (E2) and technology maturity (E3), while most technical barriers are causal factors, such as “interoperability (T4)” and “smart contracts' security (T2)”.

Practical implications

This study contributes to a better understanding of the problem associated with blockchain implementation and provides policymakers with recommendations.

Originality/value

Identified TOE barriers lay the groundwork for theoretical observations to comprehend the blockchain adoption problem. This research also applied the fuzzy method to blockchain adoption barrier analysis, which can reduce the uncertainty and subjectivity in expert evaluations with a small sample.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 1000