Search results

1 – 10 of 610
Article
Publication date: 9 July 2018

Fatma Yasli and Bersam Bolat

Risk analysis is a critical investigation field for many sectors and organizations to maintain the information management reliable. Since mining is one of the riskiest sectors for…

Abstract

Purpose

Risk analysis is a critical investigation field for many sectors and organizations to maintain the information management reliable. Since mining is one of the riskiest sectors for both workers and management, comprehensive risk analysis should be carried out. The purpose of this paper is to explore comprehensively the undesired events that may occur during a particular process with their main reasons and to perform a risk analysis for these events, by developing a risk analysis methodology. For performing risk analysis, discovering and defining the potential accidents and incidents including their root causes are important contributions of the study as distinct from the related literature. The fuzzy approach is used substantially to obtain the important inferences about the hazardous process by identifying the critical risk points in the processes. In the scope of the study, the proposed methodology is applied to an underground chrome mine and obtaining significant findings of mining risky operations is targeted.

Design/methodology/approach

Fault tree analysis and fuzzy approach are used for performing the risk analysis. When determining the probability and the consequences of the events which are essential components for the risk analysis, expressions of the heterogeneous expert group are considered by means of the linguistic terms. Fault tree analysis and fuzzy approach present a quiet convenience solution together to specify the possible accidents and incidents in the particular process and determine the values for the basis risk components.

Findings

This study primarily presents a methodology for a comprehensive risk analysis. By implementing the proposed methodology to the underground loading and conveying processes of a chrome mine, 28 different undesired events that may occur during the processes are specified. By performing risk analysis for these events, it is established that the employee’s physical constraint while working with the shovel in the fore area, the falling of materials on employees from the chute and the scaling bar injuries are the riskiest undesired events in the underground loading and conveying process of the mine.

Practical implications

The proposed methodology provides a confidential and comprehensive method for risk analysis of the undesired events in a particular process. The capability of fault tree analysis for specifying the undesired events systematically and the applicability of fuzzy approach for converting the experts’ linguistic expressions to the mathematical values provide a significant advantage and convenience for the risk analysis.

Originality/value

The major contribution of this paper is to develop a methodology for the risk analysis of a variety of mining accidents and incidents. The proposed methodology can be applied to many production processes to investigate the dangerous operations comprehensively and find out the efficient management strategies. Before performing the risk analysis, determining the all possible accidents and incidents in the particular process using the fault tree analysis provides the effectiveness and the originality of the study. Also, using the fuzzy logic to find out the consequences of the events with experts’ linguistic expressions provides an efficient method for performing risk analysis.

Details

Journal of Enterprise Information Management, vol. 31 no. 4
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 28 April 2023

Daas Samia and Innal Fares

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…

Abstract

Purpose

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.

Design/methodology/approach

The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.

Findings

A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.

Research limitations/implications

This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.

Originality/value

Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 22 May 2023

Rocky Khajuria and Komal

The main goal of this paper is to develop novel (weakest t-norm)-based fuzzy arithmetic operations to analyze the intuitionistic fuzzy reliability of Printed Circuit Board…

Abstract

Purpose

The main goal of this paper is to develop novel (weakest t-norm)-based fuzzy arithmetic operations to analyze the intuitionistic fuzzy reliability of Printed Circuit Board Assembly (PCBA) using fault tree.

Design/methodology/approach

The paper proposes a fuzzy fault tree analysis (FFTA) method for evaluating the intuitionistic fuzzy reliability of any nonrepairable system with uncertain information about failures of system components. This method uses a fault tree for modeling the failure phenomenon of the system, triangular intuitionistic fuzzy numbers (TIFNs) to determine data uncertainty, while novel arithmetic operations are adopted to determine the intuitionistic fuzzy reliability of a system under consideration. The proposed arithmetic operations employ (weakest t-norm) to minimize the accumulating phenomenon of fuzziness, whereas the weighted arithmetic mean is employed to determine the membership as well as nonmembership degrees of the intuitionistic fuzzy failure possibility of the nonrepairable system. The usefulness of the proposed method has been illustrated by inspecting the intuitionistic fuzzy failure possibility of the PCBA and comparing the results with five other existing FFTA methods.

Findings

The results show that the proposed FFTA method effectively reduces the accumulating phenomenon of fuzziness and provides optimized degrees of membership and nonmembership for computed intuitionistic fuzzy reliability of a nonrepairable system.

Originality/value

The paper introduces (weakest t-norm) and weighted arithmetic mean based operations for evaluating the intuitionistic fuzzy failure possibility of any nonrepairable system in an uncertain environment using a fault tree.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 December 2017

Mohamed Marzouk and Emad Mohamed

Decisions by construction contractors to bid (or not to bid) require the thorough assessment and evaluation of factors relevant to the decision, as well as the quantification of…

Abstract

Purpose

Decisions by construction contractors to bid (or not to bid) require the thorough assessment and evaluation of factors relevant to the decision, as well as the quantification of their combined impact, to produce successful bid/no-bid decisions. The purpose of this study is to present a fuzzy fault tree model to assist construction contractors to more efficiently bid for future projects.

Design/methodology/Approach

The proposed model consist of two stages: first, identification of the factors that affect bidding decision using a questionnaire survey after an extensive literature review, and second, usage of the identified factors to build a fuzzy fault tree model to simulate the bidding decision.

Findings

A list of 15 factors that affect bid/no-bid decisions was identified. Analysis of factors revealed that the highest-ranking factors were related to financial aspects of the project. A case study is presented to demonstrate the capabilities of the model, and a fuzzy important analysis is performed on the basic events to demonstrate the differences between three contractors’ bid/no-bid decisions. The results reveal that there is variation between the decisions of each contractor based on their willingness to participate. Besides, the influence of evaluation factors on the final decision for each contractor is different.

Originality/value

The study contributes to the body of knowledge on tendering and bidding practices. The proposed model incorporated the fuzzy set theory, which suits human subjectivity. The proposed methodology overcomes the limitations of previous models as it can, using the linear pool opinion principle, combine and weigh the evaluations of multiple experts. In addition, the model is convenient for situations where historical data are not available.

Article
Publication date: 8 May 2018

Mina Moeinedini, Sadigh Raissi and Kaveh Khalili-Damghani

Enterprise resource planning (ERP) is assumed as a commonly used solution in order to provide an integrated view of core business processes, including product planning…

Abstract

Purpose

Enterprise resource planning (ERP) is assumed as a commonly used solution in order to provide an integrated view of core business processes, including product planning, manufacturing cost, delivery, marketing, sales, inventory management, shipping and payment. Selection and implementation of a suitable ERP solution are not assumed a trivial project because of the challenging nature of it, high costs, long-duration of installation and customization, as well as lack of successful benchmarking experiences. During the ERP projects, several risk factors threat the successful implementation of the project. These risk factors usually refer to different phases of the ERP projects including purchasing, pilot implementation, teaching, install, synchronizing, and movement from old systems toward new ones, initiation and utilization. These risk factors have dominant effects on each other. The purpose of this paper is to explore the hybrid reliability-based method is proposed to assess the risk factors of ERP solutions.

Design/methodology/approach

In this regard, the most important risk factors of ERP solutions are first determined. Then, the interactive relations of these factors are recognized using a graph based method, called interpretive structural modeling. The resultant network of relations between these factors initiates a new viewpoint toward the cause and effect relations among risk factors. Afterwards, a fuzzy fault tree analysis is proposed to calculate Failure Fuzzy Possibility (FFP) for the basic events of the fault tree leading to a quantitative evaluation of risk factors.

Findings

The whole proposed method is applied in a well-known Iranian foodservice distributor as a case study. The most impressive risk factors are identified, classified and prioritized. Moreover, the cause and effect diagram between the risk factors are identified. So, the ERP leader can plan a low-risk project and increase the chance of success.

Originality/value

According to the authors’ best knowledge, such approach was not reported before in the literature of ERP risk assessments.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 19 March 2021

Rongxing Duan, Shujuan Huang and Jiejun He

This paper aims to deal with the problems such as epistemic uncertainty, common cause failure (CCF) and dynamic fault behaviours that arise in complex systems and develop an…

Abstract

Purpose

This paper aims to deal with the problems such as epistemic uncertainty, common cause failure (CCF) and dynamic fault behaviours that arise in complex systems and develop an effective fault diagnosis method to rapidly locate the fault when these systems fail.

Design/methodology/approach

First, a dynamic fault tree model is established to capture the dynamic failure behaviours and linguistic term sets are used to obtain the failure rate of components in complex systems to deal with the epistemic uncertainty. Second, a β factor model is used to construct a dynamic evidence network model to handle CCF and some parameters obtained by reliability analysis are used to build the fault diagnosis decision table. Finally, an improved Vlsekriterijumska Optimizacija I Kompromisno Resenje algorithm is developed to obtain the optimal diagnosis sequence, which can locate the fault quickly, reduce the maintenance cost and improve the diagnosis efficiency.

Findings

In this paper, a new optimal fault diagnosis strategy of complex systems considering CCF under epistemic uncertainty is presented based on reliability analysis. Dynamic evidence network is easy to carry out the quantitative analysis of dynamic fault tree. The proposed diagnosis algorithm can determine the optimal fault diagnosis sequence of complex systems and prove that CCF should not be ignored in fault diagnosis.

Originality/value

The proposed method combines the reliability theory with multiple attribute decision-making methods to improve the diagnosis efficiency.

Details

Engineering Computations, vol. 38 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 November 2020

Komal

In recent years, the application of robots in different industrial sectors such as nuclear power generation, construction, automobile, firefighting and medicine, etc. is…

Abstract

Purpose

In recent years, the application of robots in different industrial sectors such as nuclear power generation, construction, automobile, firefighting and medicine, etc. is increasing day by day. In large industrial plants generally humans and robots work together to accomplish several tasks and lead to the problem of safety and reliability because any malfunction event of robots may cause human injury or even death. To access the reliability of a robot, sufficient amount of failure data is required which is sometimes very difficult to collect due to rare events of any robot failures. Also, different types of their failure pattern increase the difficulty which finally leads to the problem of uncertainty. To overcome these difficulties, this paper presents a case study by assessing fuzzy fault tree analysis (FFTA) to control robot-related accidents to provide safe working environment to human beings in any industrial plant.

Design/methodology/approach

Presented FFTA method uses different fuzzy membership functions to quantify different uncertainty factors and applies alpha-cut coupled weakest t-norm (Tω) based approximate fuzzy arithmetic operations to obtain fuzzy failure probability of robot-human interaction fault event which is the main contribution of the paper.

Findings

The result obtained from presented FFTA method is compared with other listing approaches. Critical basic events are also ranked using V-index for making suitable action plan to control robot-related accidents. Study indicates that the presented FFTA is a good alternative method to analyze fault in robot-human interaction for providing safe working environment in an industrial plant.

Originality/value

Existing fuzzy reliability assessment techniques designed for robots mainly use triangular fuzzy numbers (TFNs), triangle vague sets (TVS) or triangle intuitionistic fuzzy sets (IFS) to quantify data uncertainty. Present study overcomes this shortcoming and generalizes the idea of fuzzy reliability assessment for robots by adopting different IFS to control robot-related accidents to provide safe working environment to human. This is the main contribution of the paper.

Details

International Journal of Quality & Reliability Management, vol. 38 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 26 February 2019

Shahab Shoar, Farnad Nasirzadeh and Hamid Reza Zarandi

The purpose of this paper is to present a fault tree (FT)-based approach for quantitative risk analysis in the construction industry that can take into account both objective and…

Abstract

Purpose

The purpose of this paper is to present a fault tree (FT)-based approach for quantitative risk analysis in the construction industry that can take into account both objective and subjective uncertainties.

Design/methodology/approach

In this research, the identified basic events (BEs) are first categorized based on the availability of historical data into probabilistic and possibilistic. The probabilistic and possibilistic events are represented by probability distributions and fuzzy numbers, respectively. Hybrid uncertainty analysis is then performed through a combination of Monte Carlo simulation and fuzzy set theory. The probability of occurrence of the top event is finally calculated using the proposed FT-based hybrid uncertainty analysis method.

Findings

The efficiency of the proposed method is demonstrated by implementing in a real steel structure project. A quantitative risk assessment is performed for weld cracks, taking into account of both types of uncertainties. An importance analysis is finally performed to evaluate the contribution of each BE to the probability of occurrence of weld cracks and adopt appropriate response strategies.

Research limitations/implications

In this research, the impact of objective (aleatory) dependence between the occurrences of different BEs and subjective (epistemic) dependence between estimates of the epistemically uncertain probabilities of some BEs are not considered. Moreover, there exist limitations to the application of fuzzy set rules, which were used for aggregating experts’ opinions and ranking purposes of the BEs in the FT model. These limitations can be investigated through further research.

Originality/value

It is believed that the proposed hybrid uncertainty analysis method presents a robust and powerful tool for quantitative risk analysis, as both types of uncertainties are taken into account appropriately.

Article
Publication date: 12 February 2019

Komal

The purpose of this paper is to analyze the fuzzy reliability of the compressor house unit (CHU) system in a coal fired thermal power plant under vague environment by reducing the…

Abstract

Purpose

The purpose of this paper is to analyze the fuzzy reliability of the compressor house unit (CHU) system in a coal fired thermal power plant under vague environment by reducing the accumulating phenomenon of fuzziness and accelerating the computation process. This paper uses different fuzzy membership functions to quantify uncertainty and access the system reliability in terms of different fuzzy reliability indices having symmetric shapes.

Design/methodology/approach

This study analyses the fuzzy reliability of the CHU system in a coal fired thermal power plant using Tω-based generalized fuzzy Lambda-Tau (TBGFLT) technique. This approach applies fault tree, Lambda-Tau method, different fuzzy membership functions and α-cut coupled Tω-based approximate arithmetic operations to compute various reliability parameters (such as failure rate, repair time, mean time between failures, expected number of failures, availability and reliability) of the system. The effectiveness of TBGFLT technique has been demonstrated by comparing the results with results obtained from four different existing techniques. Moreover, this paper applies the extended Tanaka et al. (1983) approach to rank the critical components of the system when different membership functions are used.

Findings

The adopted TBGFLT technique in the present study improves the shortcomings of the existing approaches by reducing the accumulating phenomenon of fuzziness, accelerating the computation process and getting symmetric shapes for computed reliability parameters when different membership functions are used to quantify data uncertainty.

Originality/value

In existing fuzzy reliability techniques which are developed for repairable systems either triangular fuzzy numbers, triangle vague sets or triangle intuitionistic fuzzy sets have been used for quantifying uncertainty. These approaches do not examine the systems for components with different membership functions. The present study is an effort in this direction and evaluates the fuzzy reliability of the CHU system in a coal fired thermal power plant for components with different membership functions. This is the main contribution of the paper.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 25 August 2021

Gholamreza Heravi, Amir Hosein Taherkhani, Soroush Sobhkhiz, Ali Hassandokht Mashhadi and Rouzbeh Zahiri-Hashemi

This study provides an integrated risk-based cost and time estimation approach for deep excavation projects. The purpose is to identify the best practices in recent advances of…

Abstract

Purpose

This study provides an integrated risk-based cost and time estimation approach for deep excavation projects. The purpose is to identify the best practices in recent advances of excavation risk analysis (RA) and integrate them with traditional cost and time estimation methods.

Design/methodology/approach

The implemented best practices in this research are as follows: (1) fault-tree analysis (FTA) for risk identification (RI); (2) Bayesian belief networks (BBNs), fuzzy comprehensive analysis and Monte Carlo simulation (MCS) for risk analysis; and (3) sensitivity analysis and root-cause analysis (RCA) for risk response planning (RRP). The proposed approach is applied in an actual deep excavation project in Tehran, Iran.

Findings

The results show that the framework proposes a practical approach for integrating the risk management (RM) best practices in the domain of excavation projects with traditional cost and time estimation approaches. The proposed approach can consider the interrelationships between risk events and identify their root causes. Further, the approach engages different stakeholders in the process of RM, which is beneficial for determining risk owners and responsibilities.

Originality/value

This research contributes to the project management body of knowledge by integrating recent RM best practices in deep excavation projects for probabilistic estimation of project time and cost.

Details

Built Environment Project and Asset Management, vol. 12 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

1 – 10 of 610