Search results

1 – 10 of 19
Article
Publication date: 1 October 2018

Umamaheswari E., Ganesan S., Abirami M. and Subramanian S.

Finding the optimal maintenance schedules is the primitive aim of preventive maintenance scheduling (PMS) problem dealing with the objectives of reliability, risk and cost. Most…

Abstract

Purpose

Finding the optimal maintenance schedules is the primitive aim of preventive maintenance scheduling (PMS) problem dealing with the objectives of reliability, risk and cost. Most of the earlier works in the literature have focused on PMS with the objectives of leveling reserves/risk/cost independently. Nevertheless, very few publications in the current literature tackle the multi-objective PMS model with simultaneous optimization of reliability, and economic perspectives. Since, the PMS problem is highly nonlinear and complex in nature, an appropriate optimization technique is necessary to solve the problem in hand. The paper aims to discuss these issues.

Design/methodology/approach

The complexity of the PMS problem in power systems necessitates a simple and robust optimization tool. This paper employs the modern meta-heuristic algorithm, namely, Ant Lion Optimizer (ALO) to obtain the optimal maintenance schedules for the PMS problem. In order to extract best compromise solution in the multi-objective solution space (reliability, risk and cost), a fuzzy decision-making mechanism is incorporated with ALO (FDMALO) for solving PMS.

Findings

As a first attempt, the best feasible maintenance schedules are obtained for PMS problem using FDMALO in the multi-objective solution space. The statistical measures are computed for the test systems which are compared with various meta-heuristic algorithms. The applicability of the algorithm for PMS problem is validated through statistical t-test. The statistical comparison and the t-test results reveal the superiority of ALO in achieving improved solution quality. The numerical and statistical results are encouraging and indicate the viability of the proposed ALO technique.

Originality/value

As a maiden attempt, FDMALO is used to solve the multi-objective PMS problem. This paper fills the gap in the literature by solving the PMS problem in the multi-objective framework, with the improved quality of the statistical indices.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 17 January 2018

Balachandar Pandiyan, Sivarajan Ganesan, Nadanasabapathy Jayakumar and Srikrishna Subramanian

The ever-stringent environmental regulations force power producers to produce electricity at the cheapest price and with minimum pollutant emission levels. The electrical power…

Abstract

Purpose

The ever-stringent environmental regulations force power producers to produce electricity at the cheapest price and with minimum pollutant emission levels. The electrical power generation from fossil fuel releases several contaminants into the air, and this becomes excrescent if the generating unit is fed by multiple fuel sources (MFSs). Inclusion of this issue in operational tasks is a welcome perspective. This paper aims to develop a multi-objective model comprising total fuel cost and pollutant emission.

Design/methodology/approach

The cost-effective and environmentally responsive power system operations in the presence of MFSs can be recognised as a multi-objective constrained optimisation problem with conflicting operational objectives. The complexity of the problem requires a suitable optimisation tool. Ant lion algorithm (ALA), the most recent nature-inspired algorithm, was used as the main optimisation tool because of its salient characteristics. The fuzzy decision-making mechanism has been integrated to determine the best compromised solution in the multi-objective framework.

Findings

This paper is the first to propose a more precise and practical operational model for studying a multi-fuel power dispatch scenario considering valve-point effects and CO2 emission. The modern meta-heuristic algorithm ALA is applied for the first time to address the economic operation of thermal power systems with multiple fuel options.

Practical implications

Power companies aim to make profit by abiding by the norms of the regulatory board. To achieve economic benefits, the power system must be analysed using an accurate operational model. The proposed model integrates total fuel cost, valve-point loadings and CO2 emission, which are prevailing power system operational objectives. The economic advantages of the operational model can be observed through economic deviation indices, and the performed analysis validates that the developed model corresponds to the actual power operation.

Originality/value

The realistic operational model is proposed by considering total fuel and pollutant emission, and the ALA is applied for the first time to address the proposed multi-objective problem. To validate the effectiveness of ALA, it is implemented in standard test systems with varying generating units (10-100) and the IEEE 30 bus system, and various kinds of power system operations are performed. Moreover, the comparison and performance analysis confirm that the current proposal is found enhanced in terms of solution quality.

Details

International Journal of Energy Sector Management, vol. 12 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 5 June 2017

Janagaraman Radha, Srikrishna Subramanian, Sivarajan Ganesan and Manoharan Abirami

This study aims to minimize operating cost, adhere to pollution norms and maintain reserve and voltage levels subject to various operational concerns, including non linear…

Abstract

Purpose

This study aims to minimize operating cost, adhere to pollution norms and maintain reserve and voltage levels subject to various operational concerns, including non linear characteristics of generators and fuel limitation issues, which are useful for the current power system applications.

Design/methodology/approach

Improved control settings are required while considering multiple conflicting operational objectives that necessitate using the modern bio-inspired algorithm ant lion optimizer (ALO) as the main optimization tool. Fuzzy decision-making mechanism is incorporated in ALO to extract the best compromise solution (BCS) among set of non-dominated solutions.

Findings

The BCS records of IEEE-30 bus and JEAS-118 bus systems are updated in this work. Numerical simulation results comparison and comprehensive performance analysis justify the applicability of the intended algorithm to solve multi-objective dynamic optimal power flow (DOPF) problem over the state-of-art methods.

Originality/value

Optimal control settings are obtained for IEEE-30 and JEAS-118 bus systems with the objectives of minimizing fuel cost and emission in dynamic environment considering take-or-pay fuel contract issue. The fuzzy supported ALO (FSALO) is applied first time to solve the DOPF problem.

Details

International Journal of Energy Sector Management, vol. 11 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 7 July 2020

Golak Bihari Mahanta, Deepak BBVL, Bibhuti B. Biswal and Amruta Rout

From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable…

Abstract

Purpose

From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable nature and its economic feasibility. So, the purpose of this paperis to design a suitable gripper with appropriate design parameters for better performance in the robotic production systems.

Design/methodology/approach

In this paper, an enhanced multi-objective ant lion algorithm is introduced to find the optimal geometric and design variables of a parallel gripper. The considered robotic gripper systems are evaluated by considering three objective functions while satisfying eight constraint equations. The beta distribution function is introduced for generating the initial random number at the initialization phase of the proposed algorithm as a replacement of uniform distribution function. A local search algorithm, namely, achievement scalarizing function with multi-criteria decision-making technique and beta distribution are used to enhance the existing optimizer to evaluate the optimal gripper design problem. In this study, the newly proposed enhanced optimizer to obtain the optimum design condition of the design variables is called enhanced multi-objective ant lion optimizer.

Findings

This study aims to obtain optimal design parameters of the parallel gripper with the help of the developed algorithms. The acquired results are investigated with the past research paper conducted in that field for comparison. It is observed that the suggested method to get the best gripper arrangement and variables of the parallel gripper mechanism outperform its counterparts. The effects of the design variables are needed to be studied for a better design approach concerning the objective functions, which is achieved by sensitivity analysis.

Practical implications

The developed gripper is feasible to use in the assembly operation, as well as in other pick and place operations in different industries.

Originality/value

In this study, the problem to find the optimum design parameter (i.e. geometric parameters such as length of the link and parallel gripper joint angles) is addressed as a multi-objective optimization. The obtained results from the execution of the algorithm are evaluated using the performance indicator algorithm and a sensitivity analysis is introduced to validate the effects of the design variables. The obtained optimal parameters are used to develop a gripper prototype, which will be used for the assembly process.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 9 April 2018

Umamaheswari Elango, Ganesan Sivarajan, Abirami Manoharan and Subramanian Srikrishna

Generator maintenance scheduling (GMS) is an essential task for electric power utilities as the periodical maintenance activity enhances the lifetime and also ensures the reliable…

144

Abstract

Purpose

Generator maintenance scheduling (GMS) is an essential task for electric power utilities as the periodical maintenance activity enhances the lifetime and also ensures the reliable and continuous operation of generating units. Though numerous meta-heuristic algorithms have been reported for the GMS solution, enhancing the existing techniques or developing new optimization procedure is still an interesting research task. The meta-heuristic algorithms are population based and the selection of their algorithmic parameters influences the quality of the solution. This paper aims to propose statistical tests guided meta-heuristic algorithm for solving the GMS problems.

Design/methodology/approach

The intricacy characteristics of the GMS problem in power systems necessitate an efficient and robust optimization tool. Though several meta-heuristic algorithms have been applied to solve the chosen power system operational problem, tuning of their control parameters is a protracting process. To prevail over the previously mentioned drawback, the modern meta-heuristic algorithm, namely, ant lion optimizer (ALO), is chosen as the optimization tool for solving the GMS problem.

Findings

The meta-heuristic algorithms are population based and require proper selection of algorithmic parameters. In this work, the ANOVA (analysis of variance) tool is proposed for selecting the most feasible decisive parameters in algorithm domain, and the statistical tests-based validation of solution quality is described. The parametric and non-parametric statistical tests are also performed to validate the selection of ALO against the various competing algorithms. The numerical and statistical results confirm that ALO is a promising tool for solving the GMS problems.

Originality/value

As a first attempt, ALO is applied to solve the GMS problem. Moreover, the ANOVA-based parameter selection is proposed and the statistical tests such as Wilcoxon signed rank and one-way ANOVA are conducted to validate the applicability of the intended optimization tool. The contribution of the paper can be summarized in two folds: the ANOVA-based ALO for GMS applications and statistical tests-based performance evaluation of intended algorithm.

Details

World Journal of Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 March 2021

Raja Masadeh, Nesreen Alsharman, Ahmad Sharieh, Basel A. Mahafzah and Arafat Abdulrahman

Sea Lion Optimization (SLnO) algorithm involves the ability of exploration and exploitation phases, and it is able to solve combinatorial optimization problems. For these reasons…

Abstract

Purpose

Sea Lion Optimization (SLnO) algorithm involves the ability of exploration and exploitation phases, and it is able to solve combinatorial optimization problems. For these reasons, it is considered a global optimizer. The scheduling operation is completed by imitating the hunting behavior of sea lions.

Design/methodology/approach

Cloud computing (CC) is a type of distributed computing, contributory in a massive number of available resources and demands, and its goal is sharing the resources as services over the internet. Because of the optimal using of these services is everlasting challenge, the issue of task scheduling in CC is significant. In this paper, a task scheduling technique for CC based on SLnO and multiple-objective model are proposed. It enables decreasing in overall completion time, cost and power consumption; and maximizes the resources utilization. The simulation results on the tested data illustrated that the SLnO scheduler performed better performance than other state-of-the-art schedulers in terms of makespan, cost, energy consumption, resources utilization and degree of imbalance.

Findings

The performance of the SLnO, Vocalization of Whale Optimization Algorithm (VWOA), Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO) and Round Robin (RR) algorithms for 100, 200, 300, 400 and 500 independent cloud tasks on 8, 16 and 32 VMs was evaluated. The results show that SLnO algorithm has better performance than VWOA, WOA, GWO and RR in terms of makespan and imbalance degree. In addition, SLnO exhausts less power than VWOA, WOA, GWO and RR. More precisely, SLnO conserves 5.6, 21.96, 22.7 and 73.98% energy compared to VWOA, WOA, GWO and RR mechanisms, respectively. On the other hand, SLnO algorithm shows better performance than the VWOA and other algorithms. The SLnO algorithm's overall execution cost of scheduling the cloud tasks is minimized by 20.62, 39.9, 42.44 and 46.9% compared with VWOA, WOA, GWO and RR algorithms, respectively. Finally, the SLnO algorithm's average resource utilization is increased by 6, 10, 11.8 and 31.8% compared with those of VWOA, WOA, GWO and RR mechanisms, respectively.

Originality/value

To the best of the authors’ knowledge, this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

Details

International Journal of Web Information Systems, vol. 17 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 12 January 2023

Zhixiang Chen

The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more…

Abstract

Purpose

The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues.

Design/methodology/approach

Utilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case.

Findings

Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues.

Originality/value

The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 19 May 2022

Merlin Sajini M.L., Suja S. and Merlin Gilbert Raj S.

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by…

Abstract

Purpose

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by renewable energy resources to scale back the power loss and to recover the voltage levels. Though several algorithms have already been proposed through the target of power loss reduction and voltage stability enhancement, further optimization of the objectives is improved by using a combination of heuristic algorithms like DE and particle swarm optimization (PSO).

Design/methodology/approach

The identification of the candidate buses for the location of DG units and optimal rating of DG units is found by a combined differential evolution (DE) and PSO algorithm. In the combined strategy of DE and PSO, the key merits of both algorithms are combined. The DE algorithm prevents the individuals from getting trapped into the local optimum, thereby providing efficient global optimization. At the same time, PSO provides a fast convergence rate by providing the best particle among the entire iteration to obtain the best fitness value.

Findings

The proposed DE-PSO takes advantage of the global optimization of DE and the convergence rate of PSO. The different case studies of multiple DG types are carried out for the suggested procedure for the 33- and 69-bus radial delivery frameworks and a real 16-bus distribution substation in Tamil Nadu to show the effectiveness of the proposed methodology and distribution system performance. From the obtained results, there is a substantial decrease in the power loss and an improvement of voltage levels across all the buses of the system, thereby maintaining the distribution system within the framework of system operation and safety constraints.

Originality/value

A comparison of an equivalent system with the DE, PSO algorithm when used separately and other algorithms available in literature shows that the proposed method results in an improved performance in terms of the convergence rate and objective function values. Finally, an economic benefit analysis is performed if a photo-voltaic based DG unit is allocated in the considered test systems.

Article
Publication date: 11 May 2023

Farbod Zahedi, Hamidreza Kia and Mohammad Khalilzadeh

The vehicle routing problem (VRP) has been widely investigated during last decades to reduce logistics costs and improve service level. In addition, many researchers have realized…

Abstract

Purpose

The vehicle routing problem (VRP) has been widely investigated during last decades to reduce logistics costs and improve service level. In addition, many researchers have realized the importance of green logistic system design in decreasing environmental pollution and achieving sustainable development.

Design/methodology/approach

In this paper, a bi-objective mathematical model is developed for the capacitated electric VRP with time windows and partial recharge. The first objective deals with minimizing the route to reduce the costs related to vehicles, while the second objective minimizes the delay of arrival vehicles to depots based on the soft time window. A hybrid metaheuristic algorithm including non-dominated sorting genetic algorithm (NSGA-II) and teaching-learning-based optimization (TLBO), called NSGA-II-TLBO, is proposed for solving this problem. The Taguchi method is used to adjust the parameters of algorithms. Several numerical instances in different sizes are solved and the performance of the proposed algorithm is compared to NSGA-II and multi-objective simulated annealing (MOSA) as two well-known algorithms based on the five indexes including time, mean ideal distance (MID), diversity, spacing and the Rate of Achievement to two objectives Simultaneously (RAS).

Findings

The results demonstrate that the hybrid algorithm outperforms terms of spacing and RAS indexes with p-value <0.04. However, MOSA and NSGA-II algorithms have better performance in terms of central processing unit (CPU) time index. In addition, there is no meaningful difference between the algorithms in terms of MID and diversity indexes. Finally, the impacts of changing the parameters of the model on the results are investigated by performing sensitivity analysis.

Originality/value

In this research, an environment-friendly transportation system is addressed by presenting a bi-objective mathematical model for the routing problem of an electric capacitated vehicle considering the time windows with the possibility of recharging.

Article
Publication date: 26 July 2011

Khairy A.H. Kobbacy and Sunil Vadera

The use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing…

2580

Abstract

Purpose

The use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing body of publications over the last two decades means that it can be difficult to keep track of what has been done previously, what has worked, and what really needs to be addressed. Hence, the purpose of this paper is to present a survey of the use of AI in operations management aimed at presenting the key research themes, trends and directions of research.

Design/methodology/approach

The paper builds upon our previous survey of this field which was carried out for the ten‐year period 1995‐2004. Like the previous survey, it uses Elsevier's Science Direct database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus, the application categories adopted are: design; scheduling; process planning and control; and quality, maintenance and fault diagnosis. Research on utilising neural networks, case‐based reasoning (CBR), fuzzy logic (FL), knowledge‐Based systems (KBS), data mining, and hybrid AI in the four application areas are identified.

Findings

The survey categorises over 1,400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: the trends for design and scheduling show a dramatic increase in the use of genetic algorithms since 2003 that reflect recognition of their success in these areas; there is a significant decline in research on use of KBS, reflecting their transition into practice; there is an increasing trend in the use of FL in quality, maintenance and fault diagnosis; and there are surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research.

Originality/value

This is the largest and most comprehensive study to classify research on the use of AI in operations management to date. The survey and trends identified provide a useful reference point and directions for future research.

Details

Journal of Manufacturing Technology Management, vol. 22 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of 19