Search results

1 – 10 of over 11000
Article
Publication date: 24 September 2019

Madjid Tavana and Vahid Hajipour

Expert systems are computer-based systems that mimic the logical processes of human experts or organizations to give advice in a specific domain of knowledge. Fuzzy expert systems

Abstract

Purpose

Expert systems are computer-based systems that mimic the logical processes of human experts or organizations to give advice in a specific domain of knowledge. Fuzzy expert systems use fuzzy logic to handle uncertainties generated by imprecise, incomplete and/or vague information. The purpose of this paper is to present a comprehensive review of the methods and applications in fuzzy expert systems.

Design/methodology/approach

The authors have carefully reviewed 281 journal publications and 149 conference proceedings published over the past 37 years since 1982. The authors grouped the journal publications and conference proceedings separately accordingly to the methods, application domains, tools and inference systems.

Findings

The authors have synthesized the findings and proposed useful suggestions for future research directions. The authors show that the most common use of fuzzy expert systems is in the medical field.

Originality/value

Fuzzy logic can be used to manage uncertainty in expert systems and solve problems that cannot be solved effectively with conventional methods. In this study, the authors present a comprehensive review of the methods and applications in fuzzy expert systems which could be useful for practicing managers developing expert systems under uncertainty.

Details

Benchmarking: An International Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 28 April 2023

Daas Samia and Innal Fares

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…

Abstract

Purpose

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.

Design/methodology/approach

The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.

Findings

A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.

Research limitations/implications

This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.

Originality/value

Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 8 April 2014

Gül Tekin Temur, Muhammet Balcilar and Bersam Bolat

The purpose of this study is to develop a fuzzy expert system to design robust forecast of return quantity in order to handle uncertainties from the return process in reverse…

1339

Abstract

Purpose

The purpose of this study is to develop a fuzzy expert system to design robust forecast of return quantity in order to handle uncertainties from the return process in reverse logistic network.

Design/methodology/approach

The most important factors which have impact on return of products are defined. Then the factors which have collinearity with others are eliminated by using dimension redundancy analysis. By training data of selected factors with fuzzy expert system, the return amounts of alternative cities are forecasted.

Findings

The performance metrics of the proposed model are found as satisfactory. That means the result of this study indicates that fuzzy expert systems can be used as a supportive tool for forecasting return quantity of alternative areas.

Research limitations/implications

In the future, the proposed model can be used for forecasting other uncertain parameters such as return quality and return time. Other fuzzy systems such as type-2 fuzzy sets can be used, or other expert systems such as artificial neural networks can be integrated into fuzzy systems.

Practical implications

An application at an e-recycling facility is conducted for clarifying how the method is used in a real decision process.

Originality/value

It is the first study which aims to model an alternative forecasting by utilizing fuzzy expert system. Furthermore, a comprehensive factor list which includes predictors of the system is defined. Then, a dimension redundancy analysis is developed to reveal factors having significant impact on the return process and eliminate the rest.

Details

Journal of Enterprise Information Management, vol. 27 no. 3
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 17 June 2021

Meysam Azimian, Mahdi Karbasian, Karim Atashgar and Golam Kabir

This paper addresses special reliability-centered maintenance (RCM) strategies for one-shot devices by providing fuzzy inferences system with the assumption that, to data, there…

Abstract

Purpose

This paper addresses special reliability-centered maintenance (RCM) strategies for one-shot devices by providing fuzzy inferences system with the assumption that, to data, there is no data available on their maintenance. As far as one-shot devices are concerned, the relevant data is inadequate.

Design/methodology/approach

In this paper, a fuzzy expert system is proposed to effectively select RCM strategies for one-shot devices. In this research: (1) a human expert team is provided, (2) spatial RCM strategies for one-shot devices and parameters bearing upon those strategies are determined, (3) the verbal variables of the expert team are transformed into fuzzy sets, (4) the relationship between parameters and strategies are designed whereupon a model is developed by MATLAB software, (5) Finally, the model is applied to a real-life one-shot system.

Findings

The finding of this study indicates that the proposed fuzzy expert system can determine the parameters affecting the choice of the appropriate one-shot RCM strategies, and a fuzzy inference system can help for effective decision making.

Originality/value

The developed model can be used as a fast and reliable method for determining an appropriate one-shot RCM strategy, whose results can be relied upon with a suitable approximation in respect of the behavior test. To the best authors’ knowledge, this problem is not addressed yet.

Details

Journal of Quality in Maintenance Engineering, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Book part
Publication date: 5 October 2018

Aminah Robinson Fayek and Rodolfo Lourenzutti

Construction is a highly dynamic environment with numerous interacting factors that affect construction processes and decisions. Uncertainty is inherent in most aspects of…

Abstract

Construction is a highly dynamic environment with numerous interacting factors that affect construction processes and decisions. Uncertainty is inherent in most aspects of construction engineering and management, and traditionally, it has been treated as a random phenomenon. However, there are many types of uncertainty that are not naturally modelled by probability theory, such as subjectivity, ambiguity and vagueness. Fuzzy logic provides an approach for handling such uncertainties. However, fuzzy logic alone has some limitations, including its inability to learn from data and its extensive reliance on expert knowledge. To address these limitations, fuzzy logic has been combined with other techniques to create fuzzy hybrid techniques, which have helped solve complex problems in construction. In this chapter, a background on fuzzy logic in the context of construction engineering and management applications is presented. The chapter provides an introduction to uncertainty in construction and illustrates how fuzzy logic can improve construction modelling and decision-making. The role of fuzzy logic in representing uncertainty is contrasted with that of probability theory. Introductory material is presented on key definitions, properties and methods of fuzzy logic, including the definition and representation of fuzzy sets and membership functions, basic operations on fuzzy sets, fuzzy relations and compositions, defuzzification methods, entropy for fuzzy sets, fuzzy numbers, methods for the specification of membership functions and fuzzy rule-based systems. Finally, a discussion on the need for fuzzy hybrid modelling in construction applications is presented, and future research directions are proposed.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 3 October 2016

Norbert Grzesik

In the era of common digitalization and far reaching progress in the field of cybernetics, it is necessary to use the knowledge and experience in military cybernetics…

Abstract

Purpose

In the era of common digitalization and far reaching progress in the field of cybernetics, it is necessary to use the knowledge and experience in military cybernetics applications. In the field of machines, control fuzzy expert inference systems open new horizons and possibilities. Generally, the main affect of human efforts in the case of artificial intelligence is to create a machine with a set of behaviors and attitudes that would allow it to work independently, with ability to adjust to changing environmental conditions and an advisory role in the decision-making process. It should be noted that this technology used in some cases has already produced successful results. This paper aims to describe how the fuzzy expert inference membership function shapes influence analysis on selected air tasks efficiency evaluation results. Presented results prove that proper fuzzy membership functions shape selection has fundamental influence on aircraft system level of efficiency evaluation (its calculation accuracy). Using this technology in military aviation air tasks efficiency evaluation aspects is pioneer.

Design/methodology/approach

In the era of common digitalization and far reaching progress in the field of cybernetics, it is necessary to use the knowledge and experience in the domain of cybernetics in military applications. Artificial intelligence that so much influences on the imagination of scholars actually opens new horizons when it comes to control the machines. Relatively recently, it is introduced for military applications such departments of artificial intelligence as fuzzy logic, expert systems and fuzzy control theory.

Findings

In this paper, fuzzy expert inference membership function shapes influence analysis on selected air tasks efficiency evaluation results are described. Presented results prove that proper fuzzy membership functions shape selection has fundamental influence on aircraft system level of efficiency evaluation (its calculation accuracy).

Practical implications

The issue solved in the paper is based on application of theoretical results in practice. The paper can be estimated to bridge the gap between theory and practice in specific field.

Originality/value

Using this technology in military aviation air tasks efficiency evaluation aspects is pioneer.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 5 October 2018

Nasir Bedewi Siraj, Aminah Robinson Fayek and Mohamed M. G. Elbarkouky

Most decision-making problems in construction are complex and difficult to solve, as they involve multiple criteria and multiple decision makers in addition to subjective…

Abstract

Most decision-making problems in construction are complex and difficult to solve, as they involve multiple criteria and multiple decision makers in addition to subjective uncertainties, imprecisions and vagueness surrounding the decision-making process. In many instances, the decision-making process is based on linguistic terms rather than numerical values. Hence, structured fuzzy consensus-reaching processes and fuzzy aggregation methods are instrumental in multi-criteria group decision-making (MCGDM) problems for capturing the point of view of a group of experts. This chapter outlines different fuzzy consensus-reaching processes and fuzzy aggregation methods. It presents the background of the basic theory and formulation of these processes and methods, as well as numerical examples that illustrate their theory and formulation. Application areas of fuzzy consensus reaching and fuzzy aggregation in the construction domain are identified, and an overview of previously developed frameworks for fuzzy consensus reaching and fuzzy aggregation is provided. Finally, areas for future work are presented that highlight emerging trends and the imminent needs of fuzzy consensus reaching and fuzzy aggregation in the construction domain.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 1 April 1996

Edward T. Lee

Manufacturing is a key to continuous economic growth. Fuzzy expert systems, fuzzy logics, fuzzy languages, fuzzy neural networks, and intelligent control are proposed as…

446

Abstract

Manufacturing is a key to continuous economic growth. Fuzzy expert systems, fuzzy logics, fuzzy languages, fuzzy neural networks, and intelligent control are proposed as additional tools in manufacturing. Fuzzy logic is a new way to program computers and appliances to mimic the imprecise way humans make decisions. Fuzzy logic has been applied to cameras, subways, computers and air conditioners. Through the use of fuzzy logic, fuzzy expert systems can be built which add a new dimension in the technologies for intelligent factories.

Details

Kybernetes, vol. 25 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 August 2005

Jagdish Pathak, Navneet Vidyarthi and Scott L. Summers

In the current global economy, the survival of an insurance company depends on its ability to respond to the customer demands. One of the demands of customers is efficient…

2607

Abstract

Purpose

In the current global economy, the survival of an insurance company depends on its ability to respond to the customer demands. One of the demands of customers is efficient settlement of insurance claims. All insurance companies face the conflicting goals of authenticating claims and settling claims quickly. The use of human adjusters in claim settlement process leaves room for subjective judgment and the use of discretion while finalizing a claim. It has been observed that the opportunity exists for claim adjustors to settle insurance claims in favor of the claimants simply by colluding with the claimant and sacrificing the monetary interest of the insurers. The increasing cost of human experts for authentication (fraud detection) has led many companies to develop technological solutions such as expert systems to assist in the authentication of processed claims.

Design/methodology/approach

We have used fuzzy math in combination with the expert systems technology to design this model system.

Findings

We develop a fuzzy logic based expert system that can identify and evaluate whether elements of fraud are involved in insurance claims settlement.

Research limitations/implications

We could not obtain real life data from any one of the insurance companies even after various attempts in Canada. Canadian Privacy Legislation does not permit these organizations to share them with any one.

Practical implications

This expert system can help decide if settled claims are genuine or if an element of fraud might exist which needs substantive testing by an auditor. The proposed methodology has been illustrated with an example that tends to model insurance claims in general.

Originality/value

The model designed in this paper is original and carries a substantial value to internal/external auditing professional who has access to these data to train the inference engine.

Details

Managerial Auditing Journal, vol. 20 no. 6
Type: Research Article
ISSN: 0268-6902

Keywords

1 – 10 of over 11000