Search results

1 – 10 of 97
Article
Publication date: 9 January 2024

Kaizheng Zhang, Jian Di, Jiulong Wang, Xinghu Wang and Haibo Ji

Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual…

Abstract

Purpose

Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual tracking capability, the generated trajectories may not be suitable for tracking control. The purpose of this paper is to design an online adjustment algorithm to improve the overall quadrotor trajectory tracking performance.

Design/methodology/approach

The authors propose a reference trajectory resampling layer (RTRL) to dynamically adjust the reference signals according to the current tracking status and future tracking risks. First, the authors design a risk-aware tracking monitor that uses the Frenét tracking errors and the curvature and torsion of the reference trajectory to evaluate tracking risks. Then, the authors propose an online adjusting algorithm by using the time scaling method.

Findings

The proposed RTRL is shown to be effective in improving the quadrotor trajectory tracking accuracy by both simulation and experiment results.

Originality/value

Infeasible reference trajectories may cause serious accidents for autonomous quadrotors. The results of this paper can improve the safety of autonomous quadrotor in application.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 19 April 2024

Yifan Guo, Yanling Guo, Jian Li, Yangwei Wang, Deyu Meng, Haoyu Zhang and Jiaming Dai

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering…

Abstract

Purpose

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering method and has reached the bottleneck of efficiency improvement. This study aims to develop an image-shaped laser sintering (ISLS) system based on a digital micromirror device (DMD) to address this problem. The ISLS system uses an image-shaped laser light source with a size of 16 mm × 25.6 mm instead of the traditional SLS point-laser light source.

Design/methodology/approach

The ISLS system achieves large-area image-shaped sintering of polymer powder materials by moving the laser light source continuously in the x-direction and updating the sintering pattern synchronously, as well as by overlapping the splicing of adjacent sintering areas in the y-direction. A low-cost composite powder suitable for the ISLS system was prepared using polyether sulfone (PES), pinewood and carbon black (CB) powders as raw materials. Large-sized samples were fabricated using composite powder, and the microstructure, dimensional accuracy, geometric deviation, density, mechanical properties and feasible feature sizes were evaluated.

Findings

The experimental results demonstrate that the ISLS system is feasible and can print large-sized parts with good dimensional accuracy, acceptable geometric deviations, specific small-scale features and certain density and mechanical properties.

Originality/value

This study has achieved the transition from traditional point sintering mode to image-shaped surface sintering mode. It has provided a new approach to enhance the system performance of traditional SLS.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 March 2024

Xiaohui Li, Dongfang Fan, Yi Deng, Yu Lei and Owen Omalley

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of…

Abstract

Purpose

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of enhanced physical training. The main objective is to identify key advancements in sensor fusion technology, evaluate its application in VR systems and understand its impact on physical training.

Design/methodology/approach

The research initiates by providing context to the physical training environment in today’s technology-driven world, followed by an in-depth overview of VR. This overview includes a concise discussion on the advancements in sensor fusion technology and its application in VR systems for physical training. A systematic review of literature then follows, examining VR’s application in various facets of physical training: from exercise, skill development and technique enhancement to injury prevention, rehabilitation and psychological preparation.

Findings

Sensor fusion-based VR presents tangible advantages in the sphere of physical training, offering immersive experiences that could redefine traditional training methodologies. While the advantages are evident in domains such as exercise optimization, skill acquisition and mental preparation, challenges persist. The current research suggests there is a need for further studies to address these limitations to fully harness VR’s potential in physical training.

Originality/value

The integration of sensor fusion technology with VR in the domain of physical training remains a rapidly evolving field. Highlighting the advancements and challenges, this review makes a significant contribution by addressing gaps in knowledge and offering directions for future research.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 22 March 2024

Geming Zhang, Lin Yang and Wenxiang Jiang

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is…

Abstract

Purpose

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.

Design/methodology/approach

The paper describes the key technologies that are involved in the development of the system, such as P-wave identification and earthquake early-warning, multi-source seismic information fusion and earthquake emergency treatment technologies. The paper also presents the test results of the system, which show that it has complete functions and its major performance indicators meet the design requirements.

Findings

The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety. The key technical indicators of the system have excellent performance: The first report time of the P-wave is less than three seconds. From the first arrival of P-wave to the beginning of train braking, the total delay of onboard emergency treatment is 3.63 seconds under 95% probability. The average total delay for power failures triggered by substations is 3.3 seconds.

Originality/value

The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions. It also contributes to the earthquake prevention and disaster reduction efforts.

Article
Publication date: 15 September 2023

Kaushal Jani

This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither…

19

Abstract

Purpose

This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither supervised machine learning nor manual engineering are used in this work. Instead, the OTV educates itself without instruction from humans or labeling. Beyond its link to stopping distance and lateral mobility, choosing the right speed is crucial. One of the biggest problems with autonomous operations is accurate perception. Obstacle avoidance is typically the focus of perceptive technology. The vehicle's shock is nonetheless controlled by the terrain's roughness at high speeds. The precision needed to recognize difficult terrain is far higher than the accuracy needed to avoid obstacles.

Design/methodology/approach

Robots that can drive unattended in an unfamiliar environment should be used for the Orbital Transfer Vehicle (OTV) for the clearance of space debris. In recent years, OTV research has attracted more attention and revealed several insights for robot systems in various applications. Improvements to advanced assistance systems like lane departure warning and intelligent speed adaptation systems are eagerly sought after by the industry, particularly space enterprises. OTV serves as a research basis for advancements in machine learning, computer vision, sensor data fusion, path planning, decision making and intelligent autonomous behavior from a computer science perspective. In the framework of autonomous OTV, this study offers a few perceptual technologies for autonomous driving in this study.

Findings

One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.

Originality/value

One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 January 2023

Afiqah R. Radzi, Nur Farhana Azmi, Syahrul Nizam Kamaruzzaman, Rahimi A. Rahman and Eleni Papadonikolaki

Digital twin (DT) and building information modeling (BIM) are interconnected in some ways. However, there has been some misconception about how DT differs from BIM. As a result…

Abstract

Purpose

Digital twin (DT) and building information modeling (BIM) are interconnected in some ways. However, there has been some misconception about how DT differs from BIM. As a result, industry professionals reject DT even in BIM-based construction projects due to reluctance to innovate. Furthermore, researchers have repeatedly developed tools and techniques with the same goals using DT and BIM to assist practitioners in construction projects. Therefore, this study aims to assist industry professionals and researchers in understanding the relationship between DT and BIM and synthesize existing works on DT and BIM.

Design/methodology/approach

A systematic review was conducted on published articles related to DT and BIM. A total record of 54 journal articles were identified and analyzed.

Findings

The analysis of the selected journal articles revealed four types of relationships between DT and BIM: BIM is a subset of DT, DT is a subset of BIM, BIM is DT, and no relationship between BIM and DT. The existing research on DT and BIM in construction projects targets improvements in five areas: planning, design, construction, operations and maintenance, and decommissioning. In addition, several areas have emerged, such as developing geo-referencing approaches for infrastructure projects, applying the proposed methodology to other construction geometries and creating 3D visualization using color schemes.

Originality/value

This study contributed to the existing body of knowledge by overviewing existing research related to DT and BIM in construction projects. Also, it reveals research gaps in the body of knowledge to point out directions for future research.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 12 April 2024

Ahmad Honarjoo and Ehsan Darvishan

This study aims to obtain methods to identify and find the place of damage, which is one of the topics that has always been discussed in structural engineering. The cost of…

Abstract

Purpose

This study aims to obtain methods to identify and find the place of damage, which is one of the topics that has always been discussed in structural engineering. The cost of repairing and rehabilitating massive bridges and buildings is very high, highlighting the need to monitor the structures continuously. One way to track the structure's health is to check the cracks in the concrete. Meanwhile, the current methods of concrete crack detection have complex and heavy calculations.

Design/methodology/approach

This paper presents a new lightweight architecture based on deep learning for crack classification in concrete structures. The proposed architecture was identified and classified in less time and with higher accuracy than other traditional and valid architectures in crack detection. This paper used a standard dataset to detect two-class and multi-class cracks.

Findings

Results show that two images were recognized with 99.53% accuracy based on the proposed method, and multi-class images were classified with 91% accuracy. The low execution time of the proposed architecture compared to other valid architectures in deep learning on the same hardware platform. The use of Adam's optimizer in this research had better performance than other optimizers.

Originality/value

This paper presents a framework based on a lightweight convolutional neural network for nondestructive monitoring of structural health to optimize the calculation costs and reduce execution time in processing.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 August 2023

Muhammad Akram Naseem, Rizwan Ali and Ramiz Ur Rehman

This study aims to investigate the mediating role of corporate social responsibility (CSR) in the link between board independence, board diversity and dividend payouts…

Abstract

Purpose

This study aims to investigate the mediating role of corporate social responsibility (CSR) in the link between board independence, board diversity and dividend payouts underpinning the agency theory perspective. As boards are ultimately responsible for decision-making, it includes CSR, dividend payouts and other strategic decisions.

Design/methodology/approach

Board independence and board diversity (female director, female independent director) are used as explanatory variables, CSR scores as a mediator and dividend payout explained variables. The relevant data were collected from 159 listed firms of the Pakistan Stock Exchange (PSX) from 2013 to 2019, consisting of 1,113 year-firm observations. For empirical estimation, the study used the Tobit regression analysis and Sobel test to check the significance of the mediation to confirm the hypothesis.

Findings

The results confirm that independence and diversity on the board are positively related to dividend payouts. Further, CSR partially mediates the link between independence and diversity on board-dividend payouts, which confirms the argument that firms with involvement in CSR practices are also associated with dividend payouts.

Research limitations/implications

To the best of the authors’ knowledge, this study is novel to address whether CSR mediates the link of the board’s independence and diversity and dividend payouts in Pakistan’s setting. The results of this study have restricted generalizability due to the specific nature of the sample characteristics; future researchers can extend the research scope.

Practical implications

Theoretically practically, the results imply that CSR spending also enhances the distribution to firms' shareholders, thus becoming attractive to investors. This study enriches the literature on board attributes-dividend policy nexus, which strengthens through CSR practices and is relevant to practice in line with sustainable development in an emerging context.

Originality/value

CSR practices are an understudied but significant factor that links stakeholders' beliefs about firms' decision-making strategies, enhancing dividend announcements. In doing so, this study's findings contribute to the literature, regulators, shareholders and investor at various levels.

Details

Gender in Management: An International Journal , vol. 39 no. 2
Type: Research Article
ISSN: 1754-2413

Keywords

Open Access
Article
Publication date: 16 August 2023

Matthew Ikuabe, Clinton Aigbavboa, Chimay Anumba and Ayodeji Emmanuel Oke

Through its advanced computational capabilities, cyber–physical systems (CPS) proffer solutions to some of the cultural challenges plaguing the effective delivery of facilities…

Abstract

Purpose

Through its advanced computational capabilities, cyber–physical systems (CPS) proffer solutions to some of the cultural challenges plaguing the effective delivery of facilities management (FM) mandates. This study aims to explore the drivers for the uptake of CPS for FM functions using a qualitative approach – the Delphi technique.

Design/methodology/approach

Using the Delphi technique, the study selected experts through a well-defined process entailing a pre-determined set of criteria. The experts gave their opinions in two iterations which were subjected to statistical analyses such as the measure of central tendency and interquartile deviation in ascertaining consensus among the experts and the Mann–Whitney U test in establishing if there is a difference in the opinions given by the experts.

Findings

The study’s findings show that six of the identified drivers of the uptake of CPS for FM were attributed to be of very high significance, while 12 were of high significance. Furthermore, it was revealed that there is no significant statistical difference in the opinions given by experts in professional practice and academia.

Practical implications

The study’s outcome provides the requisite insight into the propelling measures for the uptake of CPS for FM by organisations and, by extension, aiding digital transformation for effective FM delivery.

Originality/value

To the best of the authors’ knowledge, evidence from the literature suggests that no study has showcased the drivers of the incorporation of CPS for FM. Hence, this study fills this gap in knowledge by unravelling the significant propelling measures of the integration of CPS for FM functions.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 97