Search results

1 – 10 of 264
Article
Publication date: 3 October 2023

Roberto Junior Algarín Roncallo, Luis Lisandro Lopez Taborda and Diego Guillen

The purpose of this research is present an experimental and numerical study of the mechanical properties of the acrylonitrile butadiene styrene (ABS) in the additive manufacturing…

Abstract

Purpose

The purpose of this research is present an experimental and numerical study of the mechanical properties of the acrylonitrile butadiene styrene (ABS) in the additive manufacturing (AM) by fused filament fabrication (FFF). The characterization and mechanical models obtained are used to predict the elastic behavior of a prosthetic foot and the failure of a prosthetic knee manufactured with FFF.

Design/methodology/approach

Tension tests were carried out and the elastic modulus, yield stress and tensile strength were evaluated for different material directions. The material elastic constants were determined and the influence of infill density in the mechanical strength was evaluated. Yield surfaces and failure criteria were generated from the tests. Failures over prosthetic elements in tridimensional stresses were analyzed; the cases were evaluated via finite element method.

Findings

The experimental results show that the material is transversely isotropic. The elasticity modulus, yield stress and ultimate tensile strength vary linearly with the infill density. The stresses and the failure criteria were computed and compared with the experimental tests with good agreement.

Practical implications

This research can be applied to predict failures and improve reliability in FFF or fused deposition modeling (FDM) products for applications in high-performance industries such as aerospace, automotive and medical.

Social implications

This research aims to promote its widespread adoption in the industrial and medical sectors by increasing reliability in products manufactured with AM based on the failure criterion.

Originality/value

Most of the models studied apply to plane stress situations and standardized specimens of printed material. However, the models applied in this study can be used for functional parts and three-dimensional stress, with accuracy in the range of that obtained by other researchers. The researchers also proposed a method for the mechanical study of fragile materials fabricated by processes of FFF and FDM.

Article
Publication date: 20 October 2022

Donghua Zhao, Jiapeng He, Gaohan Zhu, Youcheng Han and Weizhong Guo

The rapid development of three-dimensional (3D) printing makes it familiar in daily life, especially the fused deposition modeling 3D printers. The process planning of traditional…

Abstract

Purpose

The rapid development of three-dimensional (3D) printing makes it familiar in daily life, especially the fused deposition modeling 3D printers. The process planning of traditional flat layer printing includes slicing and path planning to obtain the boundaries and the filling paths for each layer along the vertical direction. There is a clear division line through the whole fabricated part, inherited in the flat-layer-based printed parts. This problem is brought about by the seam of the boundary in each layer. Hence, the purpose of this paper is to propose a novel helical filling path generation with the ideal surface-plane intersection for a rotary 3D printer.

Design/methodology/approach

The detailed algorithm and implementation steps are given with several worked examples to enable readers to understand it better. The adjacent points obtained from the planar slicing are combined to generate each layer's helical points. The contours of all layers are traversed to obtain the helical surface layer and helical path. Meanwhile, the novel rotary four-degree of freedom 3D printer is briefly introduced.

Findings

As a proof of concept, this paper presents several examples based on the rotary 3D printer designed in the authors’ previous research and the algorithms illustrated in this paper. The preliminary experiments successfully verify the feasibility and versatility of the proposed slicing method based on a rotary 3D printer.

Originality/value

This paper provides a novel and feasible slicing method for multi-axis rotary 3D printers, making manufacturing thin-wall and complex parts possible. To further broaden the proposed slicing method’s application in further research, adaptive tool path generation for flat and curved layer printing could be applied with a combination of flat and curved layers in the same layer, different layers or even different parts of structures.

Article
Publication date: 8 May 2023

Berkay Ergene, Gökmen Atlıhan and Ahmet Murat Pinar

This study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and…

Abstract

Purpose

This study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and geometrical property as tapered angle (0, 0.25 and 0.50) on vibrational behavior of 3D-printed polyethylene terephthalate glycol (PET-G) tapered beams with fused filament fabrication (FFF) method.

Design/methodology/approach

In this performance, all test specimens were modeled in AutoCAD 2020 software and then 3D-printed by FFF. The effects of printing parameters on the natural frequencies of 3D-printed PET-G beams with different tapered angles were also analyzed experimentally, and numerically (finite element analysis) via Ansys APDL 16 program. In addition to vibrational properties, tensile strength, elasticity modulus, hardness, and surface roughness of the 3D-printed PET-G parts were examined.

Findings

It can be stated that average surface roughness values ranged between 1.63 and 6.91 µm. In addition, the highest and lowest hardness values were found as 68.6 and 58.4 Shore D. Tensile strength and elasticity modulus increased with the increase of infill rate and decrease of the layer height. In conclusion, natural frequency of the 3D-printed PET-G beams went up with higher infill rate values though no critical change was observed for layer height and a change in tapered angle fluctuated the natural frequency values significantly.

Research limitations/implications

The influence of printing parameters on the vibrational properties of 3D-printed PET-G beams with different tapered angles was carried out and the determination of these effects is quite important. On the other hand, with the addition of glass or carbon fiber reinforcements to the PET-G filaments, the material and vibrational properties of the parts can be examined in future works.

Practical implications

As a result of this study, it was shown that natural frequencies of the 3D-printed tapered beams from PET-G material can be predicted via finite element analysis after obtaining material data with the help of mechanical/physical tests. In addition, the outcome of this study can be used as a reference during the design of parts that are subjected to vibration such as turbine blades, drone arms, propellers, orthopedic implants, scaffolds and gears.

Social implications

It is believed that determination of the effect of the most used 3D printing parameters (layer height and infill rate) and geometrical property of tapered angle on natural frequencies of the 3D-printed parts will be very useful for researchers and engineers; especially when the importance of resonance is known well.

Originality/value

When the literature efforts are scanned in depth, it can be seen that there are many studies about mechanical or wear properties of the 3D-printed parts. However, this is the first study which focuses on the influences of the both 3D printing parameters and tapered angles on the vibrational behaviors of the tapered PET-G beams produced with material extrusion based FFF method. In addition, obtained experimental results were also supported with the performed finite element analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 August 2023

Shekhar Sharma, Saurav Datta, Tarapada Roy and Siba Sankar Mahapatra

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based…

Abstract

Purpose

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based rapid prototyping and customized product fabrication in relation to aerospace, automotive, architecture, consumer goods and medical applications. During FFF, part quality (surface finish, dimensional accuracy and static mechanical strength) is greatly influenced by several process parameters. The paper aims to study FFF parametric influence on aforesaid part quality aspects. In addition, dynamic analysis of the FFF part is carried out.

Design/methodology/approach

Interpretive structural modelling is attempted to articulate interrelationships that exist amongst FFF parameters. Next, a few specimens are fabricated using acrylonitrile butadiene styrene plastic at varied build orientation and build style. Effects of build orientation and build style on part’s ultimate tensile strength, flexure strength along with width build time are studied. Prototype beams (of different thickness) are fabricated by varying build style. Instrumental impact hammer Modal analysis is performed on the cantilever beams (cantilever support) to obtain the natural frequencies (first mode). Parametric influence on natural frequencies is also studied.

Findings

Static mechanical properties (tensile and flexure strength) are greatly influenced by build style and build orientation. Natural frequency (NF) of prototype beams is highly influenced by the build style and beam thickness.

Originality/value

FFF built parts when subjected to application, may have to face a variety of external dynamic loads. If frequency of induced vibration (due to external force) matches with NF of the component part, resonance is incurred. To avoid occurrence of resonance, operational frequency (frequency of externally applied forces) must be lower/ higher than the NF. Because NF depends on mass and stiffness, and boundary conditions, FFF parts produced through varying build style may definitely correspond to varied NF. This aspect is explained in this work.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2024

Baixi Chen, Weining Mao, Yangsheng Lin, Wenqian Ma and Nan Hu

Fused deposition modeling (FDM) is an extensively used additive manufacturing method with the capacity to build complex functional components. Due to the machinery and…

Abstract

Purpose

Fused deposition modeling (FDM) is an extensively used additive manufacturing method with the capacity to build complex functional components. Due to the machinery and environmental factors during manufacturing, the FDM parts inevitably demonstrated uncertainty in properties and performance. This study aims to identify the stochastic constitutive behaviors of FDM-fabricated polylactic acid (PLA) tensile specimens induced by the manufacturing process.

Design/methodology/approach

By conducting the tensile test, the effects of the printing machine selection and three major manufacturing parameters (i.e., printing speed S, nozzle temperature T and layer thickness t) on the stochastic constitutive behaviors were investigated. The influence of the loading rate was also explained. In addition, the data-driven models were established to quantify and optimize the uncertain mechanical behaviors of FDM-based tensile specimens under various printing parameters.

Findings

As indicated by the results, the uncertain behaviors of the stiffness and strength of the PLA tensile specimens were dominated by the printing speed and nozzle temperature, respectively. The manufacturing-induced stochastic constitutive behaviors could be accurately captured by the developed data-driven model with the R2 over 0.98 on the testing dataset. The optimal parameters obtained from the data-driven framework were T = 231.3595 °C, S = 40.3179 mm/min and t = 0.2343 mm, which were in good agreement with the experiments.

Practical implications

The developed data-driven models can also be integrated into the design and characterization of parts fabricated by extrusion and other additive manufacturing technologies.

Originality/value

Stochastic behaviors of additively manufactured products were revealed by considering extensive manufacturing factors. The data-driven models were proposed to facilitate the description and optimization of the FDM products and control their quality.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 January 2023

Shrutika Sharma, Vishal Gupta and Deepa Mudgal

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the…

Abstract

Purpose

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the need of second operation. This study aims to use additive manufacturing (AM) process for fabrication of biodegradable orthopedic small locking bone plates to overcome complications related to metallic biomaterials.

Design/methodology/approach

Fused deposition modeling technique has been used for fabrication of bone plates. The effect of varying printing parameters such as infill density, layer height, wall thickness and print speed has been studied on tensile and flexural properties of bone plates using response surface methodology-based design of experiments.

Findings

The maximum tensile and flexural strengths are mainly dependent on printing parameters used during the fabrication of bone plates. Tensile and flexural strengths increase with increase in infill density and wall thickness and decrease with increase in layer height and wall thickness.

Research limitations/implications

The present work is focused on bone plates. In addition, different AM techniques can be used for fabrication of other biomedical implants.

Originality/value

Studies on application of AM techniques on distal ulna small locking bone plates have been hardly reported. This work involves optimization of printing parameters for development of distal ulna-based bone plate with high mechanical strength. Characterization of microscopic fractures has also been performed for understanding the fracture behavior of bone plates.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 October 2022

Sermet Demir and Caner Yüksel

The purpose of this paper is to analyze the effect of printing parameters on the mechanical properties of standard dog bone specimens manufactured by fused deposition modeling.

Abstract

Purpose

The purpose of this paper is to analyze the effect of printing parameters on the mechanical properties of standard dog bone specimens manufactured by fused deposition modeling.

Design/methodology/approach

Polylactic acid (PLA) specimens were printed and tested according to the ASTM standard. The effect of five important printing parameters, layer height, raster angle, printing speed, nozzle temperature and nozzle diameter, was examined on ultimate tensile strength (UTS), elongation and apparent density. Five levels were attended for each parameter, and a high number of required experiments were reduced by applying the L25 Taguchi design of the experiment.

Findings

The effect of each parameter on outputs and optimal values for maximum tensile strength were determined. The most influential parameter is the raster angle of 64.96%. Nozzle temperature has a low effect of 1.76%, but nozzle diameter contribution is 9.77%. The experiment results are validated by analysis of variance analysis, and the optimal predicted level for parameters is 90° raster angle, 0.2 mm layer height, 100 mm/s printing speed, 200°C nozzle temperature and 0.8 mm nozzle diameter. The maximum UTS observed is 48.70 MPa for 0.8 mm nozzle diameter, whereas the minimum is 18.49 for 0.2 mm nozzle diameter.

Originality/value

This paper is a very extensive experimental research report on the effect of the parameters for the tensile property of 3D printed PLA specimens by the Taguchi method. The documented results can be further developed for an optimization model to obtain a desired mechanical property with less variation and uncertainty in a product.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 December 2022

Taha Sheikh and Kamran Behdinan

This paper aims to present a hierarchical multiscale model to evaluate the effect of fused deposition modeling (FDM) process parameters on mechanical properties. Asymptotic…

91

Abstract

Purpose

This paper aims to present a hierarchical multiscale model to evaluate the effect of fused deposition modeling (FDM) process parameters on mechanical properties. Asymptotic homogenization mathematical theory is developed into two scales (micro and macro scales) to compute the effective elastic and shear modulus of the printed parts. Four parameters, namely, raster orientation, layer height, build orientation and porosity are studied.

Design/methodology/approach

The representative volume elements (RVEs) are generated by mimicking the microstructure of the printed parts. The RVEs subjected to periodic boundary conditions were solved using finite element. The experimental characterization according to ASTM D638 was conducted to validate the computational modeling results.

Findings

The computational model reports reduction (E1, ∼>38%) and (G12, ∼>50%) when porosity increased. The elastic modulus increases (1.31%–47.68%) increasing the orthotropic behavior in parts. Quasi-solids parts (100% infill) possess 10.71% voids. A reduction of 11.5% and 16.5% in elastic modulus with layer height is reported. In total, 45–450 oriented parts were highly orthotropic, and 0–00 parts were strongest. The order of parameters affecting the mechanical properties is porosity > layer height > raster orientation > build orientation.

Originality/value

This study adds value to the state-of-the-art terms of construction of RVEs using slicing software, discarding the necessity of image processing and study of porosity in FDM parts, reporting that the infill density is not the only measure of porosity in these parts.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 December 2023

Prashant Anerao, Atul Kulkarni and Yashwant Munde

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Abstract

Purpose

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Design/methodology/approach

The study presents a variety of biocomposite materials that have been used in filaments for 3D printing by different researchers. The process of making filaments is then described, followed by a discussion of the process parameters associated with the FDM.

Findings

To achieve better mechanical properties of 3D-printed parts, it is essential to optimize the process parameters of FDM while considering the characteristics of the biocomposite material. Polylactic acid is considered the most promising matrix material due to its biodegradability and lower cost. Moreover, the use of natural fibres like hemp, flax and sugarcane bagasse as reinforcement to the polymer in FDM filaments improves the mechanical performance of printed parts.

Originality/value

The paper discusses the influence of critical process parameters of FDM like raster angle, layer thickness, infill density, infill pattern and extruder temperature on the mechanical properties of 3D-printed biocomposite.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 April 2024

Valentin Marchal, Yicha Zhang, Rémy Lachat, Nadia Labed and François Peyraut

The use of continuous fiber-reinforced filaments improves the mechanical properties obtained with the fused filament fabrication (FFF) process. Yet, there is a lack of simulation…

Abstract

Purpose

The use of continuous fiber-reinforced filaments improves the mechanical properties obtained with the fused filament fabrication (FFF) process. Yet, there is a lack of simulation tailored tools to assist in the design for additive manufacturing of continuous fiber composites. To build such models, a precise elastic model is required. As the porosity caused by interbead voids remains an important flaw of the process, this paper aims to build an elastic model integrating this aspect.

Design/methodology/approach

To study the amount of porosity, which could be a failure initiator, this study proposes a two step periodic homogenization method. The first step concerns the microscopic scale with a unit cell made of fiber and matrix. The second step is at the mesoscopic scale and combines the elastic material of the first step with the interbead voids. The void content has been set as a parameter of the model. The material models predicted with the periodic homogenization were compared with experimental results.

Findings

The comparison between periodic homogenization results and tensile test results shows a fair agreement between the experimental results and that of the numerical simulation, whatever the fibers’ orientations are. Moreover, a void content reduction has been observed by increasing the crossing angle from one layer to another. An empiric law giving the porosity according to this crossing angle was created. The model and the law can be further used for design evaluation and optimization of continuous fiber-reinforced FFF.

Originality/value

A new elastic model considering interbead voids and its variation with the crossing angle of the fibers has been built. It can be used in simulation tools to design high performance fused filament fabricated composite parts.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 264