Search results

1 – 7 of 7
Article
Publication date: 24 April 2024

Natiq Yaseen Taha Al-Maneehlawi and Akram Jalil Kadhim Shubbar

The purpose of this paper is to investigate the nonsimultaneous impact of three impactors with spherical tip on the response of a low-velocity impact on a beam.

Abstract

Purpose

The purpose of this paper is to investigate the nonsimultaneous impact of three impactors with spherical tip on the response of a low-velocity impact on a beam.

Design/methodology/approach

In this research, the third-order shear deformation theory of the beam with hyperbolic shear-strain function is used. Hamilton’s principle is applied to derive the motion equations. To simulate nonsimultaneous impacts, by using the Hertz nonlinear contact law, the contact of the impactors with different times is simulated. Comparisons with other articles are carried out in the one impactor form.

Findings

In the parametric study, the histories of the contact force and displacement of the beam are investigated in the presence of only one impactor in the center of the beam and also in the presence of three impactors, one in the center of the beam and the other two around the first impactor with a delay. One of the important and noteworthy points is that the presence of two impactors with a delay causes the maximum contact force and contact time to decrease and the maximum displacement of the beam center to increase.

Originality/value

The original point of this paper is what is the difference between the impact response of one projectile and three nonsimultaneous projectiles on the beam.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 30 April 2024

Linda M. Waldron, Danielle Docka-Filipek, Carlie Carter and Rachel Thornton

First-generation college students in the United States are a unique demographic that is often characterized by the institutions that serve them with a risk-laden and deficit-based…

Abstract

First-generation college students in the United States are a unique demographic that is often characterized by the institutions that serve them with a risk-laden and deficit-based model. However, our analysis of the transcripts of open-ended, semi-structured interviews with 22 “first-gen” respondents suggests they are actively deft, agentic, self-determining parties to processes of identity construction that are both externally imposed and potentially stigmatizing, as well as exemplars of survivance and determination. We deploy a grounded theory approach to an open-coding process, modeled after the extended case method, while viewing our data through a novel synthesis of the dual theoretical lenses of structural and radical/structural symbolic interactionism and intersectional/standpoint feminist traditions, in order to reveal the complex, unfolding, active strategies students used to make sense of their obstacles, successes, co-created identities, and distinctive institutional encounters. We find that contrary to the dictates of prevailing paradigms, identity-building among first-gens is an incremental and bidirectional process through which students actively perceive and engage existing power structures to persist and even thrive amid incredibly trying, challenging, distressing, and even traumatic circumstances. Our findings suggest that successful institutional interventional strategies designed to serve this functionally unique student population (and particularly those tailored to the COVID-moment) would do well to listen deeply to their voices, consider the secondary consequences of “protectionary” policies as potentially more harmful than helpful, and fundamentally, to reexamine the presumption that such students present just institutional risk and vulnerability, but also present a valuable addition to university environments, due to the unique perspective and broader scale of vision their experiences afford them.

Details

Symbolic Interaction and Inequality
Type: Book
ISBN: 978-1-83797-689-8

Keywords

Book part
Publication date: 26 April 2024

Margaret P. Weiss, Lisa Goran, Michael Faggella-Luby and David F. Bateman

In this chapter, we focus on specially designed instruction (SDI) as a core value for the field of specific learning disabilities (SLD). SDI is at the heart of special education…

Abstract

In this chapter, we focus on specially designed instruction (SDI) as a core value for the field of specific learning disabilities (SLD). SDI is at the heart of special education, and the field of LD has been built on the core value that effective instruction improves student outcomes. We describe a two-step test and an extended example of what is and is not SDI for Matt, a student with an SLD. Finally, we discuss some of the confusion surrounding SDI and the need for the field to return to its core value of individualized, intentional, targeted, evidence- or high leverage practice–based, and systematic instruction for students with SLD.

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 July 2023

Arshad Hasan, Naeem Sheikh and Muhammad Bilal Farooq

This study aims to examine why tax reforms fail and explores how tax collection can be improved within a developing country context.

Abstract

Purpose

This study aims to examine why tax reforms fail and explores how tax collection can be improved within a developing country context.

Design/methodology/approach

Data comprise 28 semi-structured interviews with taxpayers, tax experts and tax authority personnel based in Pakistan. The results are analysed using a combined lens of taxpayer trust and tax agencies’ capabilities.

Findings

Tax reforms failed to build taxpayers’ trust and tax agencies’ capabilities. Building trust is challenging and demands extensive ongoing engagement with taxpayers while yielding gradual permanent results. This requires enhancing confidence in government; educating taxpayers; removing complexities; introducing transparency and accountability in tax agencies’ operations and the tax system; promoting procedural and distributive justice; and reversing perceptions of corruption through reconciliation and stakeholder inclusivity. Developing tax agencies’ capabilities requires upgrading outdated technologies, systems and processes; implementing governance and organisational reforms; introducing an oversight board; and recruiting and training skilled professionals.

Practical implications

The findings can assist policymakers and tax collection authorities in understanding why tax reforms fail and identifying potential solutions.

Originality/value

This study contributes to the emerging literature by exploring tax administration failures in developing countries. It contributes to the literature by engaging stakeholders to understand why reforms fail and potential solutions to stimulate tax revenues.

Details

Meditari Accountancy Research, vol. 32 no. 3
Type: Research Article
ISSN: 2049-372X

Keywords

1 – 7 of 7