Search results

1 – 10 of over 1000
Article
Publication date: 16 October 2018

Victor Rizov

The purpose of this paper is to develop an analysis of longitudinal fracture behaviour of a functionally graded non-linear-elastic circular shaft loaded in torsion. It is assumed…

Abstract

Purpose

The purpose of this paper is to develop an analysis of longitudinal fracture behaviour of a functionally graded non-linear-elastic circular shaft loaded in torsion. It is assumed that the material is functionally graded in both radial and longitudinal directions of the shaft (i.e. the material is bi-directional functionally graded).

Design/methodology/approach

The Ramberg–Osgood stress-strain relation is used to describe the non-linear mechanical behaviour of the functionally graded material. The fracture is studied in terms of the strain energy release rate by analysing the balance of the energy. The strain energy release rate is obtained also by differentiating of the complementary strain energy with respect to the crack area for verification.

Findings

Parametric studies are carried out in order to evaluate the influence of material gradients in radial and longitudinal directions, the crack location in radial direction and the crack length on the fracture behaviour of the shaft. It is found that by using appropriate gradients in radial and longitudinal directions, one can tailor the variations of material properties in order to improve the fracture performance of the non-linear-elastic circular shafts to the externally applied torsion moments.

Originality/value

A longitudinal cylindrical crack in a bi-directional functionally graded non-linear-elastic circular shaft loaded in torsion is analysed by using the Ramberg–Osgood stress-strain relation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 October 2018

Victor Rizov

A delamination fracture analysis of two-dimensional functionally graded multilayered end-loaded split beam configuration with non-linear mechanical behaviour of material is…

52

Abstract

Purpose

A delamination fracture analysis of two-dimensional functionally graded multilayered end-loaded split beam configuration with non-linear mechanical behaviour of material is conducted. The beam is made of an arbitrary number of longitudinal layers. Perfect adhesion between layers is assumed. The material is two-dimensional functionally graded in the cross-section of each layer. Also, each layer has individual thickness and material properties. A delamination crack is located arbitrary along the beam height. The paper aims to discuss these issues.

Design/methodology/approach

The delamination fracture behaviour is investigated analytically in terms of the strain energy release rate by analysing the balance of the energy. An additional analysis of the delamination fracture is performed by applying the J-integral approach for verification.

Findings

The solutions derived are used to evaluate the effects of crack location, material gradients and material non-linearity on the delamination fracture behaviour of end-loaded split beam. The effect of material gradient on the distribution of the J-integral value along the crack front is elucidated too.

Originality/value

Delamination in the multilayered functionally graded end-loaded split beam exhibiting non-linear mechanical behaviour of the material is analysed assuming that the material property is distributed non-linearly in both thickness and width directions in each layer.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

49

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 September 2017

Victor Rizov

The purpose of this paper is to perform an analytical study of non-linear elastic delamination fracture in the multilayered functionally graded split cantilever beam (SCB…

Abstract

Purpose

The purpose of this paper is to perform an analytical study of non-linear elastic delamination fracture in the multilayered functionally graded split cantilever beam (SCB) configuration. The SCB studied may have an arbitrary number of vertical layers. The material in each layer is functionally graded along the layer thickness. Also, the material properties may be different in each layer. The analytical solution derived was applied for parametric investigations in order to evaluate the effects of material properties and delamination crack location on the non-linear fracture behaviour.

Design/methodology/approach

The delamination fracture was studied in terms of the strain energy release rate. The SCB mechanical response was described by using a power-law stress-strain relation. A non-linear analytical solution for the strain energy release rate was derived by considering the SCB complementary strain energy. In order to verify the solution, an additional analysis of the strain energy release rate was developed by considering the complementary strain energy in the beam cross-sections ahead and behind the crack front.

Findings

The effects of material gradient, crack location along the beam width and non-linear material behaviour on the delamination fracture were evaluated. The analytical solution derived is useful for parametric studies of non-linear fracture in multilayered functionally graded beams.

Originality/value

Delamination fracture in the multilayered functionally graded SCB configuration was analysed with considering the non-linear material behaviour.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 February 2018

Victor Rizov

This paper aims to analyze the elastic-plastic delamination fracture behaviour of multilayered functionally graded four-point bending beam configuration.

Abstract

Purpose

This paper aims to analyze the elastic-plastic delamination fracture behaviour of multilayered functionally graded four-point bending beam configuration.

Design/methodology/approach

The mechanical response of beam is described by a power-law stress-strain relation. The fracture is studied analytically in terms of the strain energy release rate by considering the beam complimentary strain energy. The beam can have an arbitrary number of layers. Besides, each layer may have different thickness and material properties. Also, in each layer, the material is functionally graded along the beam width. A delamination crack is located arbitrary between layers. Thus, the crack arms have different thickness.

Findings

The analysis developed is used to elucidate the effects of crack location, material gradient and non-linear behaviour of material on the delamination fracture. It is found that the material non-linearity leads to increase in the strain energy release rate. Therefore, the non-linear behaviour of material should be taken into account in fracture mechanics-based safety design of structural members and components made of multilayered functionally graded materials. The analysis revealed that the strain energy release rate can be effectively regulated by using appropriate material gradients in the design stage of multilayered functionally graded constructions.

Originality/value

Delamination fracture behaviour of multilayered functionally graded four-point bending beam configuration is studied in terms of the strain energy release rate by taking into account the material non-linearity.

Details

World Journal of Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 February 2018

Victor Rizov

The purpose of this paper is to carry out a delamination fracture analysis of the three-dimensional functionally graded split cantilever beam (SCB) configuration.

Abstract

Purpose

The purpose of this paper is to carry out a delamination fracture analysis of the three-dimensional functionally graded split cantilever beam (SCB) configuration.

Design/methodology/approach

The fracture behaviour was studied analytically in terms of the strain energy release rate by applying methods of linear elastic fracture mechanics. It was assumed that the material is functionally graded along the beam width, height and length. The strain energy release rate was derived by analysing the stress and strain state in the beam cross-sections ahead and behind the crack front. An additional analysis of the strain energy release rate was performed by considering the beam strain energy for verification.

Findings

The influence of material gradient along the beam width, height and length on the delamination fracture behaviour was investigated. The effect of crack length was analysed too. The analytical approach developed is very useful for parametric fracture investigations. The results obtained in the present study can be applied for optimisation of three-dimensional functionally graded beam systems in their design with respect to delamination fracture behaviour.

Originality/value

An analytical approach for studying the delamination fracture in the SCB configuration that is functionally graded along the beam width, height and length was developed.

Details

International Journal of Structural Integrity, vol. 9 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 February 2021

Kamal Kishore Joshi and Vishesh Ranjan Kar

The purpose of this study is the comprehensive numerical assessment of multidirectional (1D/2D/3D) functionally graded composite panel structures with different material gradation…

Abstract

Purpose

The purpose of this study is the comprehensive numerical assessment of multidirectional (1D/2D/3D) functionally graded composite panel structures with different material gradation patterns and degrees of material heterogeneity. Here, deformation characteristics are obtained under different loading and support conditions.

Design/methodology/approach

The finite element solutions of multidirectional functionally graded composite panels subjected to uniform and sinusoidal transverse loads are presented under different support conditions. Here, different functionally graded composites, such as unidirectional (1D) and multidirectional (2D/3D), are considered by distributing constituent materials in one, two and three directions, respectively, using single and multivariable power-law functions. A constitutive model with fully spatial-dependent elastic stiffness is developed, whereas the kinematics of the present structure is defined using equivalent single-layer higher-order theory. The weak form, based on the principle of virtual work, is established and solved consequently using isoparametric finite element approximations via quadrilateral Lagrangian elements.

Findings

The appropriate mesh-refinement process is carried out to achieve the mesh convergence; whereas, the correctness of proposed heterogeneous model is confirmed through a verification test. The comprehensive numerical assessment of multidirectional functionally graded panels under various loading and support conditions depicts the importance of degree of material heterogeneity with different gradation patterns and volume-fraction exponents.

Originality/value

A comprehensive analysis on the deformation behaviour of 1D-functionally graded materials (FGMs) (X-FGM, Y-FGM and Z-FGM), 2D-FGMs (XY-FGM, YZ-FGM and XZ-FGM) and 3D-FGM composite panels FGM structures is presented. Multifaceted heterogeneous FGMs are modelled by varying constituent materials in one, two and three directions, using power-law functions. The constitutive model of multi-directional FGM is developed using fully spatial-dependent elastic matrix and higher-order kinematics. Isoparametric 2D finite element formulation is adopted using quadrilateral Lagrangian elements to model 1D/2D/3D-FGM structures and to obtain their deflection responses under different loading and support conditions.

Details

Engineering Computations, vol. 38 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2005

Li Lin, Zhou Zhen‐Gong and Wu Lin‐Zhi

In this paper, the problem of two parallel symmetry permeable cracks in functionally graded piezoelectric/piezomagnetic materials subjected to an anti‐plane shear loading is…

Abstract

In this paper, the problem of two parallel symmetry permeable cracks in functionally graded piezoelectric/piezomagnetic materials subjected to an anti‐plane shear loading is investigated by use the Schmidt method. To make the analysis tractable, it is assumed that the material properties varied exponentially with coordinate vertical to the crack. Through the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables were the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces were expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effect of the geometry of the interacting crack and the functionally graded parameter upon the stress intensity factors. The relations among the electric filed, the magnetic flux field and the stress field are obtained. The shielding effect of two parallel cracks has been discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 February 2018

Victor Rizov

The purpose of this paper is to present an analytical study of the delamination fracture behaviour of a multilayered two-dimensional functionally graded cantilever beam…

Abstract

Purpose

The purpose of this paper is to present an analytical study of the delamination fracture behaviour of a multilayered two-dimensional functionally graded cantilever beam configuration. A delamination crack is located arbitrary along the height of the beam cross-section. The layers have different thicknesses and material properties. Perfect adhesion is assumed between layers. The material is functionally graded in both thickness and width directions in each layer. Besides, the material of the beam exhibits non-linear-elastic behaviour.

Design/methodology/approach

The delamination fracture behaviour is analysed in terms of the strain energy release rate. The J-integral approach is applied in order to verify the analysis of the strain energy release rate developed in the present paper.

Findings

The influence of material properties, the crack location along the height of the beam cross-section and the non-linear behaviour of the material on the delamination fracture is examined.

Originality/value

A non-linear delamination fracture analysis of multilayered two-dimensional non-symmetric functionally graded beam configuration is developed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 April 2007

S.M. Hosseini, M. Akhlaghi and M. Shakeri

This paper seeks to obtain the dynamic behavior of cylinders made of functionally graded materials (FGMs). The cylinder should be analyzed subjected to dynamic and shock loads.

Abstract

Purpose

This paper seeks to obtain the dynamic behavior of cylinders made of functionally graded materials (FGMs). The cylinder should be analyzed subjected to dynamic and shock loads.

Design/methodology/approach

The functionally graded cylinder is assumed to be made of many subcylinders. The material properties within a subcylinder are assumed to vary linearly in the thickness direction. The material properties in subcylinders are chosen as linear functions. The properties are controlled by volume fraction that is an exponential function of radius. The shell is assumed to be in plane strain condition, and is subjected to axisymmetric dynamic loading. The Navier Equation is solved by Galerkin finite element and Newmark methods. By using the Fast Fourier Transform, the time response is transferred to frequency domain and natural frequencies are illustrated.

Findings

The dynamic behavior of functionally graded thick hollow cylinder is discussed. The radial wave propagation due to an internal pressure unloading is studied. The time history of radial stresses are discussed and the mean velocity of radial stress wave propagation for different exponent “n” of FGM are determined.

Originality/value

This paper presents the high strength technique to studying and analyzing the functionally graded thick hollow cylinders subjected to dynamic loads and the mean velocity of radial wave propagation is obtained using the proposed method.

Details

Engineering Computations, vol. 24 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000