Search results

1 – 10 of 76
Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

52

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 December 2023

Sanjay Kumar Singh, Lakshman Sondhi, Rakesh Kumar Sahu and Royal Madan

The purpose of the study is to perform elastic stress and deformation analysis of a functionally graded hollow disk under different conditions (rotation, gravity, internal…

Abstract

Purpose

The purpose of the study is to perform elastic stress and deformation analysis of a functionally graded hollow disk under different conditions (rotation, gravity, internal pressure, temperature with variable heat generation) and their combinations.

Design/methodology/approach

The classical method of solution, Navier's equation, is used to solve the governing equation. The analysis considers thermal and mechanical boundary conditions and takes into account the variation of material properties according to a power law function of the radius of the disk and grading parameter.

Findings

The findings of the study reveal distinct trends and behaviors based on different grading parameters. The influence of gravity is found to be negligible, resulting in similar patterns to the pure rotation case. Variable heat generation introduces non-linear temperature profiles and higher displacements, with stress values influenced by grading parameters.

Practical implications

The study provides valuable insights into the behavior of displacement and stresses in hollow disks, offering a deeper understanding of their mechanical response under varying conditions. These insights can be useful in the design and analysis of functionally graded hollow disks in various engineering applications.

Originality/value

The originality and value of this study lies in the consideration of various loading combinations of rotation, gravity, internal pressure and temperature with variable heat generation. Furthermore, the study of effect of various angular rotations, temperatures and pressures expands the understanding of the mechanical behavior of such structures, contributing to the existing body of knowledge in the field.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 July 2022

Upendra Bajpai, Palash Soni, Vivek Kumar Gaba and Shubhankar Bhowmick

When the temperature of an air conditioning unit’s fin surface goes below its dew point temperature, condensation forms on the unit’s surface. As a result, the cooling coil’s…

Abstract

Purpose

When the temperature of an air conditioning unit’s fin surface goes below its dew point temperature, condensation forms on the unit’s surface. As a result, the cooling coil’s performance is compromised. By altering the cross-section and heat conductivity of the fins, the performance of such systems can be improved. This study aims to analyze the thermal performance of longitudinal fins made up of a variable thickness (assuming constant weight) and functionally graded material.

Design/methodology/approach

Different grading parameters are considered for an exponential variation of thermal conductivity. The humidity ratio and the corresponding fin temperatures are assumed to follow a cubic relationship. The Bvp4c solver in MATLAB® is used to solve the differential heat transfer equation resulting from balancing heat transfer in a small segment.

Findings

Validation of the methodology is provided by previous research presented in this area. For different combinations of grading parameters, geometry parameters and relative humidity, the normalized temperature distribution along the fin length and fin efficiency contours are plotted, and the results are very promising.

Originality/value

When compared to the efficiency of an isotropic homogenous rectangular longitudinal fin with optimal geometry and grading parameters, a 17% increase in efficiency under fully wet conditions is measured. When it comes to fin design, these efficiency contour plots are extremely useful.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2023

Dileep Bonthu, Bharath H.S., Siddappa I. Bekinal, P. Jeyaraj and Mrityunjay Doddamani

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical…

Abstract

Purpose

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses.

Design/methodology/approach

Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria.

Findings

The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend.

Originality/value

The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 January 2024

Shaonan Shi, Feixiang Tang, Yongqiang Yu, Yuzheng Guo, Fang Dong and Sheng Liu

Hoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and…

Abstract

Purpose

Hoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and manufacturing process in factories like micro-electro-mechanical system (MEMS) and other industries.

Design/methodology/approach

The authors design a method by establishing a reasonable mathematical model of the physical microplate composed of a porous FGM.

Findings

The authors discover that the porosity, the distributions of porosity, the power law of the FGM and the length-to-thickness ratio all affect the natural frequency of the vibration of the microplate, but in different ways.

Originality/value

Originally proposed a model of the micro FGM plate considering the different distributions of the porosity and scale effect and analyzed the vibration frequency of it.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 September 2022

Natiq Yaseen Taha Al-Menahlawi, Mohammad Reza Khoshravan Azar, Tajbakhsh Navid Chakherlou and Hussein Al-Bugharbee

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in…

Abstract

Purpose

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in the thickness direction. In this article, polymethyl methacrylate is used for matrix, and single-walled carbon nanotube (CNTs) (10,10) with consideration agglomeration sizes and lumping of CNT inside the agglomerations is applied for reinforcement.

Design/methodology/approach

In analytical formulation, the non-linear Hertz contact law is applied for interaction between projectile and plate surface. High-order shear deformation plate theory is developed, and energy of the system for impactor and plate is written. The governing equations are derived using Ritz method and Lagrange equations and are solved using the fourth-order Runge–Kutta method. Also, ABAQUS finite element model of functionally graded porous plate with all edges simply supported and reinforced by CNT under low-velocity impact is simulated and is compared with those is achieved in the present analytical approach.

Findings

In parametric studies, the influence of porosity distribution patterns include uniform, non-uniform symmetric and non-uniform asymmetric on the histories of contact force and impactor displacement of simply supported plate reinforced by CNT are presented. Eventually, the effects of porosity coefficient, impactor initial velocity, impactor radius and CNTs lumping inside agglomerations for non-uniform symmetric distribution patterns are discussed in impact event in detail.

Originality/value

In this paper, the effect of combination of polymethyl methacrylate and CNTs with consideration agglomeration sizes and lumping of CNTs inside the agglomerations in the form of a functionally graded porous plate is studied in the problem of low-velocity impact analysis.

Article
Publication date: 13 November 2023

Mohammad Ivan Azis

Two-dimensional (2D) problems are governed by unsteady anisotropic modified-Helmholtz equation of time–space dependent coefficients are considered. The problems are transformed…

Abstract

Purpose

Two-dimensional (2D) problems are governed by unsteady anisotropic modified-Helmholtz equation of time–space dependent coefficients are considered. The problems are transformed into a boundary-only integral equation which can be solved numerically using a standard boundary element method (BEM). Some examples are solved to show the validity of the analysis and examine the accuracy of the numerical method.

Design/methodology/approach

The 2D problems which are governed by unsteady anisotropic modified-Helmholtz equation of time–space dependent coefficients are solved using a combined BEM and Laplace transform. The time–space dependent coefficient equation is reduced to a time-dependent coefficient equation using an analytical transformation. Then, the time-dependent coefficient equation is Laplace transformed to get a constant coefficient equation, which can be written as a boundary-only integral equation. By utilizing a BEM, this integral equation is solved to find numerical solutions to the problems in the frame of the Laplace transform. These solutions are then inversely transformed numerically to obtain solutions in the original time–space frame.

Findings

The main finding of this research is the derivation of a boundary-only integral equation for the solutions of initial-boundary value problems governed by a modified-Helmholtz equation of time–space dependent coefficients for anisotropic functionally graded materials with time-dependent properties.

Originality/value

The originality of the research lies on the time dependency of properties of the functionally graded material under consideration.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 February 2024

Mohan Kumar K and Arumaikkannu G

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices…

Abstract

Purpose

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices ranging from bending to stretch-dominated structures using selective laser sintering (SLS).

Design/methodology/approach

Three bending and two stretch-dominated unit cells were selected based on the Maxwell stability criterion. Lattices were designed with three RD and fabricated by SLS technique using PA12 material. Quasi-static compression tests with three strain rates were carried out using Taguchi's L9 experiments. The lattice compressive behaviour was verified with the Gibson–Ashby analytical model.

Findings

It has been observed that RD and strain rates played a vital role in lattice compressive properties by controlling failure mechanisms, resulting in distinct post-yielding responses as fluctuating and stable hardening in the plateau region. Analysis of variance (ANOVA) displayed the significant impact of RD and emphasised dissimilar influences of strain rate that vary to cell topology. Bending-dominated lattices showed better compressive properties than stretch-dominated lattices. The interesting observation is that stretch-dominated lattices with over-stiff topology exhibited less compressive properties contrary to the Maxwell stability criterion, whereas strain rate has less influence on the SEA of face-centered and body-centered cubic unit cells with vertical and horizontal struts (FBCCXYZ).

Practical implications

This comparative study is expected to provide new prospects for designing end-user parts that undergo various impact conditions like automotive bumpers and evolving techniques like hybrid and functionally graded lattices.

Originality/value

To the best of the authors' knowledge, this is the first work that relates the strain rate with compressive properties and also highlights the lattice behaviour transformation from ductile to brittle while the increase of RD and strain rate analytically using the Gibson–Ashby analytical model.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 August 2023

Sohit Jatain, Sunita Deswal and Kapil Kumar Kalkal

The purpose of this paper is to establish a two-dimensional model of Green–Lindsay theory for micropolar magneto-thermoelastic medium to study the photothermal effect. The model…

Abstract

Purpose

The purpose of this paper is to establish a two-dimensional model of Green–Lindsay theory for micropolar magneto-thermoelastic medium to study the photothermal effect. The model is used to study the coupling between elastic waves and plasma waves generated due to thermal changes in a micropolar elastic medium.

Design/methodology/approach

Normal mode analysis is used to obtain the analytical solutions of the governing equations.

Findings

Effects of magnetic field, micropolarity, photothermal and time are highlighted on various physical fields such as stresses, temperature, displacement and carrier density. The above physical fields also conform to the boundary conditions. It is further observed that all the physical quantities become zero outside some bounded region of space, thus confirming the notion of generalized theory of thermoelasticity.

Originality/value

The values of physical fields are computed numerically using MATLAB software considering material constants for silicon. Furthermore, the effects are depicted graphically and analyzed accordingly. The study is valuable for the analysis of thermoelastic problems involving magnetic field, micropolarity and elastic deformations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 27 January 2023

Damira Dairabayeva, Asma Perveen and Didier Talamona

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a…

1014

Abstract

Purpose

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a weak bonding strength between dissimilar materials. Low interfacial bonding strength leads to defects, anisotropy and temperature gradient in materials which negatively impact the mechanical performance of the multi-material prints. The purpose of this study was to assess the performance of different interface geometry designs in terms of the mechanical properties of the specimens.

Design/methodology/approach

Tensile test specimens were printed using: mono-material without a boundary interface, mono-material with the interface geometries (Face-to-face; U-shape; T-shape; Dovetail; Encapsulation; Mechanical interlocking; and Overlap) and multi-material with the interface geometries. The materials chosen with high and low compatibility were Tough polylactic acid (PLA) and TPU.

Findings

The main results of this study indicate that the interface geometries with the mechanical constriction between materials provide better structural integrity to the specimens. Moreover, in the case of the mono-material parts, the most effective interface design was the mechanical interlocking for both Tough PLA and TPU. On the other hand, in the case of multi-material specimens, the encapsulation showed the highest ultimate tensile strength, whereas the overlap and T-shape presented more robust bonding.

Originality/value

This study examines the mechanical performance, particularly tensile strength, strain at break, Young’s modulus and yield strength of different interface designs which were not studied in the previous studies.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 76