Search results

1 – 10 of 79
Article
Publication date: 15 January 2024

Mohammad A Gharaibeh, Markus Feisst and Jürgen Wilde

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Abstract

Purpose

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Design/methodology/approach

The AgSn TLP test samples are manufactured using pre-defined optimized TLP bonding process parameters. Consequently, tensile and creep tests are conducted at various loading temperatures to generate stress–strain and creep data to accurately determine the elastic properties and two sets of Anand model creep coefficients. The resultant tensile- and creep-based constitutive models are subsequently used in extensive finite element simulations to precisely survey the mechanical response of the AgSn TLP bonds in power electronics due to different thermal loads.

Findings

The response of both models is thoroughly addressed in terms of stress–strain relationships, inelastic strain energy densities and equivalent plastic strains. The simulation results revealed that the testing conditions and parameters can significantly influence the values of the fitted Anand coefficients and consequently affect the resultant FEA-computed mechanical response of the TLP bonds. Therefore, this paper suggests that extreme care has to be taken when planning experiments for the estimation of creep parameters of the AgSn TLP joints.

Originality/value

In literature, there is no constitutive modeling data on the AgSn TLP bonds.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 April 2024

Emma Farrell, Jennifer Symonds, Dympna Devine, Seaneen Sloan, Mags Crean, Abbie Cahoon and Julie Hogan

The purpose of this study is to understand the meaning of the term well-being as conceptualised by parents, grandparents, principals and teachers in the Irish primary education…

Abstract

Purpose

The purpose of this study is to understand the meaning of the term well-being as conceptualised by parents, grandparents, principals and teachers in the Irish primary education system.

Design/methodology/approach

A hermeneutic phenomenological approach was adopted to understand the nature and meaning of the phenomenon of well-being. Interviews were carried out with 54 principals, teachers, parents and grandparents from a representative sample of primary schools in Ireland. Each participant was asked the same, open, question: “What does well-being mean to you?” Responses were transcribed verbatim and analysed using a combination of the principles of the hermeneutic circle and Braun and Clarke’s framework for thematic analysis.

Findings

Three conceptualisations of well-being were identified (1) well-being is about being happy, (2) well-being is about being healthy and safe and (3) well-being is something you “do”.

Originality/value

To the best of our knowledge this paper is the first of its kind to describe how well-being is conceptualised by adults in Irish primary school contexts. In particular it highlights how neoliberal conceptualisations of well-being as a “thing”, a commodity exchanged on assumptions of individualism, moralism and bio-economism, have crept into the education of our youngest citizens.

Details

Health Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0965-4283

Keywords

Article
Publication date: 9 February 2024

Rizk Mostafa Shalaby and Mohamed Saad

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free…

Abstract

Purpose

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.

Design/methodology/approach

Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.

Findings

The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.

Originality/value

It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Muhamed Abdul Fatah Muhamed Mukhtar, Fakhrozi Che Ani and Mohamad Riduwan Ramli

This study aims to investigate the reliability issues of microvoid cracks in solder joint packages exposed to thermal cycling fatigue.

Abstract

Purpose

This study aims to investigate the reliability issues of microvoid cracks in solder joint packages exposed to thermal cycling fatigue.

Design/methodology/approach

The specimens are subjected to JEDEC preconditioning level 1 (85 °C/85%RH/168 h) with five times reflow at 270°C. This is followed by thermal cycling from 0°C to 100°C, per IPC-7351B standards. The specimens' cross-sections are inspected for crack growth and propagation under backscattered scanning electronic microscopy. The decoupled thermomechanical simulation technique is applied to investigate the thermal fatigue behavior. The impacts of crack length on the stress and fatigue behavior of the package are investigated.

Findings

Cracks are initiated from the ball grid array corner of the solder joint, propagating through the transverse section of the solder ball. The crack growth increases continuously up to 0.25-mm crack length, then slows down afterward. The J-integral and stress intensity factor (SIF) values at the crack tip decrease with increased crack length. Before 0.15-mm crack length, J-integral and SIF reduce slightly with crack length and are comparatively higher, resulting in a rapid increase in crack mouth opening displacement (CMOD). Beyond 0.25-mm crack length, the values significantly decline, that there is not much possibility of crack growth, resulting in a negligible change in CMOD value. This explains the crack growth arrest obtained after 0.25-mm crack length.

Practical implications

This work's contribution is expected to reduce the additional manufacturing cost and lead time incurred in investigating reliability issues in solder joints.

Originality/value

The work investigates crack propagation mechanisms of microvoid cracks in solder joints exposed to moisture and thermal fatigue, which is still limited in the literature. The parametric variation of the crack length on stress and fatigue characteristics of solder joints, which has never been conducted, is also studied.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 12 April 2024

Yanwei Dai, Libo Zhao, Fei Qin and Si Chen

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Abstract

Purpose

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Design/methodology/approach

Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.

Findings

The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.

Practical implications

The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.

Originality/value

This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 August 2022

Shailendra Chauhan, Rajeev Trehan and Ravi Pratap Singh

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting…

Abstract

Purpose

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting parameters. The various impact of cutting parameters on chip morphology was also analyzed. Superalloys, often referred to as heat-resistant alloys, have exceptional tensile, ductile and creep strength at high operating temperatures and good fatigue strength, and often better corrosion and oxidation resistance at extreme heat. Because of these qualities, these alloys account for more than half of the weight of sophisticated aviation, biomedical and thermal power plants today. Inconel X-750 is a high-temperature nickel-based superalloy that is hard to machine because of its extensive properties. At last, the discussion regarding the tool wear mechanism was analyzed and discussed in this article.

Design/methodology/approach

The machining parameters for the study are cutting speed, feed rate and depth of cut. One factor at a time approach was implemented to investigate the effect of cutting parameters on the cutting forces, surface roughness and material removal rate. The scatter plot was plotted between cutting parameters and target functions (cutting forces, surface roughness and material removal rate). The six levels of cutting speed, feed rate and depth of cut were taken as cutting parameters.

Findings

The cutting forces are primarily affected by the cutting parameters, tool geometry, work material etc. The maximum forces Fx were encountered at 10 mm/min cutting speed, 0.15 mm/rev feed rate and 0.4 mm depth of cut, further maximum forces Fy were attained at 10 mm/min cutting speed, 0.25 mm/rev feed rate and 0.4 mm depth of cut and maximum forces Fz were attained at 50 mm/min cutting speed, 0.05 mm/rev feed rate and 0.4 mm depth of cut. The maximum surface roughness value was observed at 40 mm/min cutting speed, 0.15 mm/rev feed rate and 0.5 mm depth of cut.

Originality/value

The effect of machining parameters on cutting forces, surface roughness, chip morphology and tool wear for milling of Inconel X-750 high-temperature superalloy is being less researched in the present literature. Therefore, this research paper will give a direction for researchers for further studies to be carried out in the domain of high-temperature superalloys. Furthermore, the different tool wear mechanisms at separate experimental trials have been explored to evaluate and validate the process performance by conducting scanning electron microscopy analysis. Chip morphology has also been evaluated and analyzed under the variation of selected process inputs at different levels.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 July 2023

Safia Akram, Maria Athar, Khalid Saeed, Mir Yasir Umair and Taseer Muhammad

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced…

Abstract

Purpose

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced magnetic field in a tapered channel is examined. The study of propulsion system is on the rise in aerospace research. In spacecraft technology, the propulsion system uses high-temperature heat transmission governed through thermal radiation process. This study will help in assessment of chyme movement in the gastrointestinal tract and also in regulating the intensity of magnetic field of the blood flow during surgery.

Design/methodology/approach

The brief mathematical modelling, along with induced magnetic field, of Williamson nanofluid is given. The governing equations are reduced to dimensionless form by using appropriate transformations. Numerical technique is manipulated to solve the highly nonlinear differential equations. The roll of different variables is graphically analyzed in terms of concentration, temperature, volume fraction of nanoparticles, axial-induced magnetic field, magnetic force function, stream functions, pressure rise and pressure gradient.

Findings

The key finding from the analysis above can be summed up as follows: the temperature profile decreases and concentration profile increases due to the rising impact of thermal radiation. Brownian motion parameter has a reducing influence on nanoparticle concentration due to massive transfer of nanoparticles from a hot zone to a cool region, which causes a decrease in concentration profile· The pressure rise enhances due to rising values of thermophoresis and thermal Grashof number in retrograde pumping, free pumping and copumping region.

Originality/value

To the best of the authors’ knowledge, a study that integrates double-diffusion convection with thermal radiation, viscous dissipation and induced magnetic field on peristaltic flow of Williamson nanofluid with a channel that is asymmetric has not been carried out so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 July 2023

Chinedu Ochinanwata, Paul Agu Igwe and Dragana Radicic

The digital platform (DP) develops through a network capability that combines technological infrastructure and resources to provide goods or services. This article investigates…

Abstract

Purpose

The digital platform (DP) develops through a network capability that combines technological infrastructure and resources to provide goods or services. This article investigates how institutions influence the development of the DP entrepreneurship ecosystem (EE) in a developing economy context.

Design/methodology/approach

An exploratory qualitative approach based on interviews with 33 DP business executives in Nigeria was the chosen research method. The interview method took the form of face-to-face, telephone and zoom video meetings, depending on the respective preferences of the participants. The research philosophy is based on interpretivism. Hence, the collected data were analyzed thematically and interpreted to make sense of the business executives' perspectives about the DP landscape as well as its institutional enablers and barriers.

Findings

The findings reveal institutional elements that are either too underdeveloped or weak to nurture an effective DP system resulting in high cost of doing business. A key cultural challenge is obtaining an honest workforce and managers. Also, there is lack of effective policies, weak regulation, multiple taxation and foreign competition, which affects local digital firms. Although cultural diversity has several merits, differences in cultural values and languages create marketing and promotion challenges. Moreover, the low level of digital literacy between Generation Z, Millennials and others, such as Baby Boomers and Generation X, poses a significant challenge concerning customer segmentation.

Research limitations/implications

Research on digital technologies, the complexity of platform architectures and institutional logic has attracted interest in recent years. This article explored the institutional logic influencing the development of DP ecosystem (providing knowledge about EE in a developing world context). Despite the institutional challenges, there are multiple opportunities for Nigerian DP sector to flourish in the fast-growing economy.

Originality/value

The value of this article is related to how micro-, meso- and macro-institutional forces combine to support or become barriers to the development of the DP ecosystem, especially in developing economies where digitalization is creeping into every business sector and society.

Details

International Journal of Entrepreneurial Behavior & Research, vol. 30 no. 2/3
Type: Research Article
ISSN: 1355-2554

Keywords

Article
Publication date: 28 September 2023

Vicente-Segundo Ruiz-Jacinto, Karina-Silvana Gutiérrez-Valverde, Abrahan-Pablo Aslla-Quispe, José-Manuel Burga-Falla, Aldo Alarcón-Sucasaca and Yersi-Luis Huamán-Romaní

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite…

Abstract

Purpose

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions.

Design/methodology/approach

This paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior.

Findings

The findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction.

Originality/value

The authors confirm the originality of this paper.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 15 September 2023

Darshan Pandya, Gopal Kumar and Shalabh Singh

It is crucial for the Indian micro, small and medium enterprises (MSMEs) to implement a few of the most important Industry 4.0 (I4.0) technologies and reap maximum benefits of…

Abstract

Purpose

It is crucial for the Indian micro, small and medium enterprises (MSMEs) to implement a few of the most important Industry 4.0 (I4.0) technologies and reap maximum benefits of sustainability. This paper aims to prioritize I4.0 technologies that can help achieve the sustainable operations and sustainable industrial marketing performance of Indian manufacturing MSMEs.

Design/methodology/approach

I4.0-based sustainability model was developed. The model was analyzed using data collected from MSMEs by deploying analytic hierarchy process and utility-function-based goal programming. To have a better understanding, interviews were conducted.

Findings

Predictive analytics, machine learning and real-time computing were found to be the most important I4.0 technologies for sustainable performance. Sensitivity analysis further confirmed the robustness of the results. Business-to-business sustainable marketing is prioritized as per the sustainability need of operations of industrial MSME buyers.

Originality/value

This study uniquely integrates literature and practitioners’ insights to explore I4.0’s role in MSMEs sustainability in emerging economies. It fills a research gap by aligning sustainability goals of industrial buyers with suppliers’ marketing strategies. Additionally, it offers practical recommendations for implementing technologies in MSMEs, contributing to both academia and industry practices.

Details

Journal of Business & Industrial Marketing, vol. 39 no. 3
Type: Research Article
ISSN: 0885-8624

Keywords

1 – 10 of 79