Search results

1 – 10 of 742
Open Access
Article
Publication date: 8 February 2019

Godwin Amechi Okeke and Safeer Hussain Khan

The purpose of this paper is to extend the recent results of Okeke et al. (2018) to the class of multivalued

Abstract

The purpose of this paper is to extend the recent results of Okeke et al. (2018) to the class of multivalued ρ-quasi-contractive mappings in modular function spaces. We approximate fixed points of this class of nonlinear multivalued mappings in modular function spaces. Moreover, we extend the concepts of T-stability, almost T-stability and summably almost T-stability to modular function spaces and give some results.

Open Access
Article
Publication date: 18 January 2024

Hani Abidi, Rim Amami, Roger Pettersson and Chiraz Trabelsi

The main motivation of this paper is to present  the Yosida approximation of a semi-linear backward stochastic differential equation in infinite dimension. Under suitable…

Abstract

Purpose

The main motivation of this paper is to present  the Yosida approximation of a semi-linear backward stochastic differential equation in infinite dimension. Under suitable assumption and condition, an L2-convergence rate is established.

Design/methodology/approach

The authors establish a result concerning the L2-convergence rate of the solution of backward stochastic differential equation with jumps with respect to the Yosida approximation.

Findings

The authors carry out a convergence rate of Yosida approximation to the semi-linear backward stochastic differential equation in infinite dimension.

Originality/value

In this paper, the authors present the Yosida approximation of a semi-linear backward stochastic differential equation in infinite dimension. Under suitable assumption and condition, an L2-convergence rate is established.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 21 June 2021

Mushtaq Ali, Mohammed Almoaeet and Basim Karim Albuohimad

This study aims to use new formula derived based on the shifted Jacobi functions have been defined and some theorems of the left- and right-sided fractional derivative for them…

Abstract

Purpose

This study aims to use new formula derived based on the shifted Jacobi functions have been defined and some theorems of the left- and right-sided fractional derivative for them have been presented.

Design/methodology/approach

In this article, the authors apply the method of lines (MOL) together with the pseudospectral method for solving space-time partial differential equations with space left- and right-sided fractional derivative (SFPDEs). Then, using the collocation nodes to reduce the SFPDEs to the system of ordinary differential equations, which can be solved by the ode45 MATLAB toolbox.

Findings

Applying the MOL method together with the pseudospectral discretization method converts the space-dependent on fractional partial differential equations to the system of ordinary differential equations.

Originality/value

This paper contributes to gain choosing the shifted Jacobi functions basis with special parameters a, b and give the authors this opportunity to obtain the left- and right-sided fractional differentiation matrices for this basis exactly. The results of the examples are presented in this article. The authors found that the method is efficient and provides accurate results, and the authors found significant implications for success in the science, technology, engineering and mathematics domain.

Details

Arab Journal of Mathematical Sciences, vol. 28 no. 2
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 16 June 2021

Francisco Jesús Arjonilla García and Yuichi Kobayashi

This study aims to propose an offline exploratory method that consists of two stages: first, the authors focus on completing the kinematics model of the system by analyzing the…

Abstract

Purpose

This study aims to propose an offline exploratory method that consists of two stages: first, the authors focus on completing the kinematics model of the system by analyzing the Jacobians in the vicinity of the starting point and deducing a virtual input to effectively navigate the system along the non-holonomic constraint. Second, the authors explore the sensorimotor space in a predetermined pattern and obtain an approximate mapping from sensor space to chained form that facilitates controllability.

Design/methodology/approach

In this paper, the authors tackle the controller acquisition problem of unknown sensorimotor model in non-holonomic driftless systems. This feature is interesting to simplify and speed up the process of setting up industrial mobile robots with feedback controllers.

Findings

The authors validate the approach for the test case of the unicycle by controlling the system with time-state control policy. The authors present simulated and experimental results that show the effectiveness of the proposed method, and a comparison with the proximal policy optimization algorithm.

Originality/value

This research indicates clearly that feedback control of non-holonomic systems with uncertain kinematics and unknown sensor configuration is possible.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 27 July 2022

Miroslaw Rodzewicz

The purpose of this paper is to present the author’s method of conservative load spectrum (LS) derivation and close-proximity LS extrapolation applying a correction for…

Abstract

Purpose

The purpose of this paper is to present the author’s method of conservative load spectrum (LS) derivation and close-proximity LS extrapolation applying a correction for measurement uncertainty caused by too low sampling frequency or signal noise, which may affect the load histories collected during the flying session and cause some recorded load increments to be lower than the actual values.

Design/methodology/approach

Having in mind that the recorded load signal is burdened with some measurement error, a conservative approach was applied during qualification of the recorded values into 32 discrete load-level intervals and derivation of 32 × 32 half-cycle arrays. A part of each cell value of the half-cycle array was dispersed into the neighboring cells placed above by using a random number generator. It resulted in an increase in the number of load increments, which were one or two intervals higher than those resulting from direct data processing. Such an array was termed a conservative clone of the actual LS. The close-proximity approximation consisted of multiplication of the LSs clones and their aggregation. This way, the LS for extended time of operation was obtained. The whole process was conducted in the MS Excel environment.

Findings

Fatigue life calculated for a chosen element of aircraft structure using conservative LS is about 20%–60% lower than for the actual LS (depending on the applied value of dispersion coefficients used in the procedure of LSs clones generation). It means that such a result gives a bigger safety margin when operational life of the aircraft is estimated or when the fatigue test for an extended operational period is programed based on a limited quantity of data from a flying session.

Originality/value

This paper presents a proposal for a novel, conservative approach to fatigue life estimation based on the short-term LS derived from the load signal recorded during the flying session.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 8 March 2021

Mamdouh Abdel Alim Saad Mowafy and Walaa Mohamed Elaraby Mohamed Shallan

Heart diseases have become one of the most causes of death among Egyptians. With 500 deaths per 100,000 occurring annually in Egypt, it has been noticed that medical data faces a…

1100

Abstract

Purpose

Heart diseases have become one of the most causes of death among Egyptians. With 500 deaths per 100,000 occurring annually in Egypt, it has been noticed that medical data faces a high-dimensional problem that leads to a decrease in the classification accuracy of heart data. So the purpose of this study is to improve the classification accuracy of heart disease data for helping doctors efficiently diagnose heart disease by using a hybrid classification technique.

Design/methodology/approach

This paper used a new approach based on the integration between dimensionality reduction techniques as multiple correspondence analysis (MCA) and principal component analysis (PCA) with fuzzy c means (FCM) then with both of multilayer perceptron (MLP) and radial basis function networks (RBFN) which separate patients into different categories based on their diagnosis results in this paper, a comparative study of the performance performed including six structures such as MLP, RBFN, MLP via FCM–MCA, MLP via FCM–PCA, RBFN via FCM–MCA and RBFN via FCM–PCA to reach to the best classifier.

Findings

The results show that the MLP via FCM–MCA classifier structure has the highest ratio of classification accuracy and has the best performance superior to other methods; and that Smoking was the most factor causing heart disease.

Originality/value

This paper shows the importance of integrating statistical methods in increasing the classification accuracy of heart disease data.

Details

Review of Economics and Political Science, vol. 6 no. 3
Type: Research Article
ISSN: 2356-9980

Keywords

Open Access
Article
Publication date: 7 October 2021

Thanh Ha Le and Nigel Finch

This paper analyzes variations in the effects of monetary and fiscal shocks on responses of macroeconomic variables, determinacy region, and welfare costs due to changes in trend…

2321

Abstract

Purpose

This paper analyzes variations in the effects of monetary and fiscal shocks on responses of macroeconomic variables, determinacy region, and welfare costs due to changes in trend inflation.

Design/methodology/approach

The authors develop the New-Keynesian model, in which the central banks can employ either nominal interest rate (IR rule) or money supply (MS rule) to conduct monetary policies. They also use their capital and recurrent spending budgets to conduct fiscal policies. By using the simulated method of moment (SMM) for parameter estimation, the authors characterize Vietnam's economy during 1996Q1–2015Q1.

Findings

The results report that consequences of monetary policy and fiscal policy shocks become more serious if there is a rise in trend inflation. Furthermore, the money supply might not be an effective instrument, and using the government budget for recurrent spending produces severe consequences in the high-trend inflation economy.

Practical implications

This paper's findings are critical for economists and monetary and fiscal authorities in effectively designing both the monetary and fiscal policies in confronting the shift in the inflation targets.

Originality/value

This is the first paper that examines the effects of trend inflation on the monetary and fiscal policy implementation in the case of Vietnam.

Details

Journal of Economics and Development, vol. 24 no. 2
Type: Research Article
ISSN: 1859-0020

Keywords

Open Access
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with…

2092

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 4 August 2020

Ch. Sanjeev Kumar Dash, Ajit Kumar Behera, Satchidananda Dehuri and Sung-Bae Cho

This work presents a novel approach by considering teaching learning based optimization (TLBO) and radial basis function neural networks (RBFNs) for building a classifier for the…

Abstract

This work presents a novel approach by considering teaching learning based optimization (TLBO) and radial basis function neural networks (RBFNs) for building a classifier for the databases with missing values and irrelevant features. The least square estimator and relief algorithm have been used for imputing the database and evaluating the relevance of features, respectively. The preprocessed dataset is used for developing a classifier based on TLBO trained RBFNs for generating a concise and meaningful description for each class that can be used to classify subsequent instances with no known class label. The method is evaluated extensively through a few bench-mark datasets obtained from UCI repository. The experimental results confirm that our approach can be a promising tool towards constructing a classifier from the databases with missing values and irrelevant attributes.

Details

Applied Computing and Informatics, vol. 18 no. 1/2
Type: Research Article
ISSN: 2210-8327

Keywords

Open Access
Article
Publication date: 13 November 2018

Bo Liu, Libin Shen, Huanling You, Yan Dong, Jianqiang Li and Yong Li

The influence of road surface temperature (RST) on vehicles is becoming more and more obvious. Accurate predication of RST is distinctly meaningful. At present, however, the…

1014

Abstract

Purpose

The influence of road surface temperature (RST) on vehicles is becoming more and more obvious. Accurate predication of RST is distinctly meaningful. At present, however, the prediction accuracy of RST is not satisfied with physical methods or statistical learning methods. To find an effective prediction method, this paper selects five representative algorithms to predict the road surface temperature separately.

Design/methodology/approach

Multiple linear regressions, least absolute shrinkage and selection operator, random forest and gradient boosting regression tree (GBRT) and neural network are chosen to be representative predictors.

Findings

The experimental results show that for temperature data set of this experiment, the prediction effect of GBRT in the ensemble algorithm is the best compared with the other four algorithms.

Originality/value

This paper compares different kinds of machine learning algorithms, observes the road surface temperature data from different angles, and finds the most suitable prediction method.

Details

International Journal of Crowd Science, vol. 2 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

1 – 10 of 742