Search results

1 – 10 of 62
Article
Publication date: 24 June 2019

B.J. Gireesha, G. Sowmya and Madhu Macha

This paper aims to study the temperature performance with natural convection and radiation effect on a porous fin in fully wet condition.

Abstract

Purpose

This paper aims to study the temperature performance with natural convection and radiation effect on a porous fin in fully wet condition.

Design/methodology/approach

The finite element method (FEM) is applied to generate numerical solution of the obtained non-dimensional ordinary differential equation containing highly nonlinear terms. The parameters which impact on the heat transfer of fin have been scrutinized by means of plotted graphs.

Findings

The porous fin is taken for the analysis in radial profile moving with constant velocity. Here, the thermal conductivity is considered to be temperature dependent. The Darcy’s model has been implemented to study the heat transfer analysis.

Originality/value

The paper is genuine in its type, and there are hardly any works on fins as per the authors’ knowledge.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 May 2019

Seyed Abdolkarim Payambarpour, Mohammad Alhuyi Nazari, Mohammad Hossein Ahmadi and Ali J. Chamkha

This study aims to investigate heat and mass transfer in a one-row heat exchanger. The required equations are obtained based on two-dimensional model analysis in a cell of the…

Abstract

Purpose

This study aims to investigate heat and mass transfer in a one-row heat exchanger. The required equations are obtained based on two-dimensional model analysis in a cell of the heat exchanger. By using finite difference approach, the obtained equations are solved to determine distribution of temperature and the efficiency of the heat exchanger in the case of partially wet surface. In this research, Lewis Number as unity and water vapor saturation as parabolic are assumed. Obtained results show that increase in thermal conductivity fin leads to decreasing thermal resistance; therefore, temperature changes in radial from center to out of fin are reduced and efficiency of fin increases.

Design/methodology/approach

In this regard, fin material plays a significant role in fin efficiency. Changes in airflow also result in an efficiency increase by temperature and relative humidity, and efficiency is decreased by airflow velocity increase, and these changes are almost linear. Moreover, the fins with more wet surface are more sensitive to changes in fin dimensions and air flow characteristics, and it is a result of conjugate heat transfer mechanism, in which latent heat transfer in the fins with more wet surface has a significant role.

Findings

Thermal property and geometry of the fin under wet conditions play a more important role than the fin under dry conditions. Changes in airflow result in an efficiency increase by temperature and relative humidity, and efficiency is decreased by airflow velocity increase, and these changes are almost linear. Fins with more wet surface are more sensitive to changes in fin dimensions and air flow characteristics.

Originality/value

Effects of the temperature of water supply and mass flow rate were considered in the study. The results had good agreement with actual data.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 December 2019

Sowmya G., Gireesha B.J. and Prasannakumara B.C.

The purpose of this paper is to study the thermal behaviour of radial porous fin wetted with nanofluid containing different shaped nanoparticles in the presence of natural…

Abstract

Purpose

The purpose of this paper is to study the thermal behaviour of radial porous fin wetted with nanofluid containing different shaped nanoparticles in the presence of natural convection and radiation. Here, the nanofluid suspended with molybdenum disulfide nanoparticle with base fluid as water is considered. The influence of non-spherical nanoparticles such as platelet, cylinder, brick and blade shapes is also investigated.

Design/methodology/approach

The modeled equations are non-dimensionalized and solved numerically via Runge–Kutta–Fehlberg method combined with shooting scheme.

Findings

The flow natures of the pertinent parameter are represented graphically and discussed their physical significance. From the validation of obtained outcome, it is found that the use nanofluid has significant influence on heat transfer rate. Among platelet, cylinder, brick and blade shapes, brick-shaped nanoparticle shows better heat transfer rate.

Originality/value

The present paper deals with an analysis of the flow of molybdenum disulfide nanoparticles suspended in water over a porous fin of a radial profile. The effect of differently shaped nanoparticles on the heat transfer enhancement through the radial porous fin is investigated for the first time. The natural convection and radiation effects are also considered. The modeled equations are non-dimensionalized and solved numerically via Runge–Kutta–Fehlberg method combined with shooting scheme. The effect of pertinent parameters on temperature field is examined. From the validation of obtained outcome it is found that the use nanofluid has significant influence on heat transfer rate. Among platelet, cylinder, brick and blade shapes, brick-shaped nanoparticle shows better heat transfer rate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 May 2023

Jawad Raza, Mohsin Raza, Tahir Mustaq and Muhammad Imran Qureshi

The purpose of this paper is to study the thermal behavior of radial porous fin surrounded by water-base copper nanoparticles under the influence of radiation.

Abstract

Purpose

The purpose of this paper is to study the thermal behavior of radial porous fin surrounded by water-base copper nanoparticles under the influence of radiation.

Design/methodology/approach

In order to optimize the response variable, the authors perform sensitivity analysis with the aid of response surface methodology (RSM). Moreover, this study enlightens the applications of artificial neural networks (ANN) for predicting the temperature gradient. The governing modeled equations are firstly non-dimensionalized and then solved with the aid of Runge–Kutta fourth order together with the shooting method in order to guess the initial conditions.

Findings

Numerical results are analyzed and presented in the form of tables and graphs. This study reveals that the temperature of the fin is decreasing as the wet porous parameter increases (m2) and the temperature for 10% concentration of nanoparticles are higher than 5 and 1%. Physical parameters involved in the study are analyzed and processed through RSM. It is come to know that sensitivity of temperature gradient to radiative parameter (Nr) and convective parameter (Nc) is positive and negative to dimensionless ambient temperature (θa). Furthermore, after ANN training it can be argued that the established model can efficiently be used to predict the temperature gradient over a radial porous fin for the copper-water nanofluid flow.

Originality/value

To the best of our knowledge, only a few attempts have been made to analyze the thermal behavior of radial porous fin surrounded by copper-based nanofluid under the influence of radiation and convection.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 December 2019

G. Sowmya, B.J. Gireesha and O.D. Makinde

The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been…

Abstract

Purpose

The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been scrutinised along with the simultaneous variation of surface emissivity, heat transfer coefficient and thermal conductivity with temperature. The emissivity of the surface and the thermal conductivity are considered as linear functions of the local temperature between fin and the ambient. Darcy’s model was considered to formulate the heat transfer equation. According to this, the porous fin permits the flow to penetrate through it and solid–fluid interaction occurs.

Design/methodology/approach

Runge–Kutta–Fehlberg fourth–fifth-order method has been used to solve the reduced non-dimensionalized ordinary differential equation involving highly nonlinear terms.

Findings

The impact of pertinent parameters, such as convective parameter, radiative parameter, conductivity parameter, emissivity parameter, wet porous parameter, etc., on the temperature profiles were elaborated mathematically with the plotted graphs. The heat transfer from the fin enhances with the rise in convective parameter.

Originality/value

The wet nature of the fin enhances heat transfer and in many practical applications the parameters, such as thermal conductivity, heat transfer coefficient as well as surface emissivity, vary with temperature. Hence, the main objective of the current study is to depict the significance of simultaneous variation in surface emissivity, heat transfer coefficient and thermal conductivity with respect to temperature under natural convection and radiation condition in a totally wetted longitudinal porous fin.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 November 2016

M.T. Darvishi, Rama Subba Reddy Gorla, F. Khani and B.J. Gireesha

The purpose of this paper is to take the thermal analysis of natural convection and radiation heat transfer in fully wet porous fins. The wet porous fins taken for the analysis…

Abstract

Purpose

The purpose of this paper is to take the thermal analysis of natural convection and radiation heat transfer in fully wet porous fins. The wet porous fins taken for the analysis are straight fins in nature and wet. Their profile being straight helps heat transfer process of fins faster. The analysis is performed using the Darcy’s model to generate the heat equation to analyze the variation of convection and radiation parameters. The porous nature of the fins allows the flow to penetrate through the porous material of the fins leading to solid-fluid interface. The obtained non-dimensional ordinary differential equation involving three highly nonlinear terms are solved numerically by using spectral collocation method after which they are reduced into algebraic equations using Chebyshev polynomials. The study is analyzed using the mathematical analysis on heat equation and generating graphs for finding the parameters important to the heat transfer in the straight fins.

Design/methodology/approach

This study is performed using Darcy’s model to formulate heat transfer equation. To study the thermal performance, the authors considered a finite length fin with insulated tip. The effects of the wet fin parameter m2, porosity parameter Sh, radiation parameter G and temperature ratio CT on the dimensionless temperature distribution and heat transfer rate are discussed.

Findings

The results show that the base heat flow increases when the permeability of the medium is high and/or when the buoyancy effect induced in the fluid is strong.

Research limitations/implications

The analysis is made for the Darcy’s model. Non-Darcy effects will be investigated in a future work.

Practical implications

The approach is useful in enhancing heat transfer rates.

Originality/value

The results of the study will be interest to the researchers of the field of heat exchanger designers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 April 2020

G. Sowmya, Gireesha B.J., Muhammad Ijaz Khan, Shaher Momani and Tasawar Hayat

The purpose of this study is to conduct a numerical computation to analyse the thermal attribute and heat transfer phenomenon of a fully wetted porous fin of a longitudinal…

Abstract

Purpose

The purpose of this study is to conduct a numerical computation to analyse the thermal attribute and heat transfer phenomenon of a fully wetted porous fin of a longitudinal profile. The fin considered is that of a functionally graded material (FGM). Based on the spatial dependency of thermal conductivity, three cases such as linear, quadratic and exponential FGMs are analysed.

Design/methodology/approach

The governing equations are nondimensionalised and solved by applying Runge-Kutta-Fehlberg fourth-fifth order technique.

Findings

The parametric investigation is executed to access the significance of the pertinent parameters on the thermal feature of the fin and heat transmit rate. The outcomes are portrayed in a graphical form.

Originality/value

No such study has yet been published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2013

S.S. Feng, T. Kim and T.J. Lu

The purpose of this paper is to present a porous medium model for forced air convection in pin/plate‐fin heat sinks subjected to non‐uniform heating of a hot gas impinging jet…

Abstract

Purpose

The purpose of this paper is to present a porous medium model for forced air convection in pin/plate‐fin heat sinks subjected to non‐uniform heating of a hot gas impinging jet. Parametric studies are performed to provide comparisons between inline square pin‐fin and plate‐fin heat sinks in terms of overall and local thermal performance for a fixed pressure drop.

Design/methodology/approach

Heat conduction in substrates is coupled with forced convection in the pin/plate‐fin flow channel. The forced convection is considered by employing the non‐Darcy model for fluid flow and the thermal non‐equilibrium model for heat transfer. A series of experiments is performed to validate the model for both the pin‐fin and plate‐fin heat sinks.

Findings

The present porous medium model is capable of capturing the presence of lateral heat spreading in the plate‐fins and the absence of lateral heat spreading in the pin‐fins under non‐uniform thermal boundary condition, attributing to the adoption of the orthotropic effective thermal conductivity for the solid phase in the energy equation. The present results show that the inline square pin‐fin heat sink has topological advantage over the plate‐fin heat sink, although the heat spreading through the plate‐fins on reducing the peak temperature on the substrate is pronounced.

Originality/value

This paper reports an original research on theoretical modeling of forced convection in pin/plate‐fin heat sinks subjected to the non‐uniform heating of an impinging jet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 July 2020

Turkyilmazoglu M.

The purpose of this paper is to study an expandable or contractible metallic fin and heat transfer process. The fin is assumed to be thin having a rectangular cross section. It is…

107

Abstract

Purpose

The purpose of this paper is to study an expandable or contractible metallic fin and heat transfer process. The fin is assumed to be thin having a rectangular cross section. It is attached to a hot surface with a time-dependent temperature, and its tip extends to a medium (fluid) of an ambient temperature. With the insulated wall constraint at the tip, the tip of the metallic fin has the property of expanding or contracting in time at a specific rate.

Design/methodology/approach

The corresponding physical problem is so formulated that the unsteady heat transfer problem is governed by means of a similarity variable represented by a second-order ordinary differential equation. The system can be reduced to the traditional well-documented steady state fin problem often studied in the literature, if the unsteadiness is turned off from the formulated system.

Findings

The system is then solved analytically for the temperature distribution through the fin. The fin tip temperatures are calculated, and the heat transfer analysis is made with varying physical parameters. And finally, observations are discussed leading to better fin efficiency and heat transfer enhancement.

Originality/value

An expandable or contractible metallic fin and heat transfer process are analyzed for the first time in the literature. Full solutions are presented, whose numerical correspondence is discussed through graphical and tabular forms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1931

Philip B. Taylor

ALTHOUGH handicapped by a large frontal area, the radial air‐cooled engine has maintained its popularity up to the present. Recent developments indicate that the type is capable…

Abstract

ALTHOUGH handicapped by a large frontal area, the radial air‐cooled engine has maintained its popularity up to the present. Recent developments indicate that the type is capable of a substantial increase in effective thrust‐horse‐power, which may help to continue its present advantage. This paper is devoted to a discussion of the present status of the development of radial air‐cooled petrol engines with references to the trend of possible future progress. I believe that this type has a definite place in our present aircraft, but I do not claim that it is superior for all types of service. Whether or not the popular preference for this type will continue must be left to the future.

Details

Aircraft Engineering and Aerospace Technology, vol. 3 no. 5
Type: Research Article
ISSN: 0002-2667

1 – 10 of 62