Search results

1 – 10 of 976
Article
Publication date: 13 June 2016

Veronika Hofmann, Martin Gräfe, Norman Werther and Stefan Winter

This paper deals with the fire resistance of primary and secondary beam connections in timber structures.

Abstract

Purpose

This paper deals with the fire resistance of primary and secondary beam connections in timber structures.

Design/methodology/approach

This paper describes a series of unloaded and loaded furnace fire tests in different configurations of these types of connectors.

Findings

The main objective is the fire safety design of joist hangers and full thread screws.

Originality/value

Design recommendations are given.

Details

Journal of Structural Fire Engineering, vol. 7 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 26 September 2023

Chiara Bregoli, Jacopo Fiocchi, Carlo Alberto Biffi and Ausonio Tuissi

The present study investigates the mechanical properties of three types of Ti6Al4V ELI bone screws realized using the laser powder bed fusion (LPBF) process: a fully threaded screw

Abstract

Purpose

The present study investigates the mechanical properties of three types of Ti6Al4V ELI bone screws realized using the laser powder bed fusion (LPBF) process: a fully threaded screw and two groups containing differently arranged sectors made of lattice-based Voronoi (LBV) structure in a longitudinal and transversal position, respectively. This study aims to explore the potentialities related to the introduction of LBV structure and assess its impact on the implant’s primary stability and mechanical performance.

Design/methodology/approach

The optimized bone screw designs were realized using the LPBF process. The quality and integrity of the specimens were assessed by scanning electron microscopy and micro-computed tomography. Primary stability was experimentally verified by the insertion and removal of the screws in standard polyurethane foam blocks. Finally, torsional tests were carried out to compare and assess the mechanical strength of the different designs.

Findings

The introduction of the LBV structure decreases the elastic modulus of the implant. Longitudinal LBV type screws demonstrated the lowest insertion torque (associated with lower bone damage) while still displaying promising torsional strength and removal force compared with full-thread screws. The use of LBV structure can promote improved functional performances with respect to the reference thread, enabling the use of lattice structures in the biomedical sector.

Originality/value

The paper fulfils an identified interest in designing customized implants with improved primary stability and promising features for secondary stability.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 June 2016

Mica Grujicic, Jennifer Snipes and S Ramaswami

The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the…

Abstract

Purpose

The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the mechanical performance of the resulting FS joints.

Design/methodology/approach

Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the FS process; (b) determination of the mechanical properties of the resulting FS joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the FS joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified FS connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all FS joints is associated with a prohibitive computational cost.

Findings

Virtual testing of the shell components fastened using the joint connectors validated the ability of these line elements to realistically account for the strength, ductility and toughness of the three-dimensional FS joints.

Originality/value

The approach developed in the present work can be used, within an engineering-optimization procedure, to adjust the FS process and material parameters (design variables) in order to obtain a desired combination of the FS-joint mechanical properties (objective function).

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 February 1986

S. Giuli and F. Trave

Analyses were performed during the conceptual design stage of a 20in. threaded connector for deep water J‐pipe lay, as part of a research project developed by Tecnomare and partly…

Abstract

Analyses were performed during the conceptual design stage of a 20in. threaded connector for deep water J‐pipe lay, as part of a research project developed by Tecnomare and partly funded by the EEC. The joint consists of two parts, namely a pin and a box, provided with cylindrical threads. It was essential for the joint design to be fully leak‐proof for both internal and external pressure and this requirement had to be satisfied also under the maximum bending moment allowable for the sealine. Sealing was accomplished on a cone surface by screwing the pin into the box until yield was reached. The FEM analysis was carried out primarily to check that the pin and box remain pressed to one another over the sealing surface in every design condition with adequate pressure to prevent leakage. For this purpose, the analysis was a powerful design technique, as it gave an easy understanding of the structural behaviour and provided proper stiffness by making the joint either larger or thinner wherever required. The main characteristic of this work is that FEM analysis has been utilized as a design method rather than as a check. The analysis was performed by means of ADINA (Automatic Dynamic Incremental Non‐linear Analysis) program. Contact pressure between sealing surfaces, as achieved during the joint screwing phase, was modelled through thermal elongation. Pressure loads and external forces were superimposed through a step‐by‐step procedure, by accounting for the elastoplastic behaviour all around the sealing surface. In order to verify the behaviour of the mechanical joint, six prototypes have been fabricated and tested under the design loads of the lay phase and the operative life. The results of the tests confirmed the correct design and the results of non‐linear finite element analysis. The most important performances of the joint can be summarized as follows: (1) the make‐up phase is rapid and easy: no problems of frictional pick‐up took place; (2) no leakage happened during the internal pressure tests: the pressure of 300atm (1.5 times the design internal pressure) was maintained for 12h; (3) the load conditions of the second series of tests were: 200atm of internal pressure and the maximum allowable bending moment relevant to the pipe: after 2h no leakage happened. This paper describes the model used for the analysis, discusses its implications and the most important results achieved in comparison with the tests of the experimental phase.

Details

Engineering Computations, vol. 3 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 June 1951

MUCH ingenuity has been devoted of late years to the problem of rapid and secure fastenings for sheet‐metal work, and numbers of devices have been evolved to replace the slower…

Abstract

MUCH ingenuity has been devoted of late years to the problem of rapid and secure fastenings for sheet‐metal work, and numbers of devices have been evolved to replace the slower and more cumbersome traditional methods. A particularly interesting American development in this line takes the form of a threaded rivet of the type shown in fig. 1. The shank portion of this rivet is made somewhat thinner so that it can be upset by a suitable heading tool (hand or power). This heading tool transmits a pull on the threaded portion so that a bulge forms on the plain shank portion immediately above the threads and below the sheet or sheets to which the rivet is applied, and the pull on the threads is continued until the expanding metal seats itself firmly against the work to be fastened. The pull‐up stud of the heading tool is then removed from the threads, and the fixing is complete with the rivet threads clean, ready for the attachment of another member by means of a screw in the manner shown by fig. 2, giving at least six full threads for this purpose, no matter how thin the metal sheet.

Details

Aircraft Engineering and Aerospace Technology, vol. 23 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 September 1999

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers…

4353

Abstract

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers, brakes, gears, bearings, gaskets and seals are handled. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of this paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An Appendix included at the end of the paper presents a bibliography on finite element applications in the analysis/design of machine elements for 1977‐1997.

Details

Engineering Computations, vol. 16 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1973

GERHARD H. JUNKER

This is the continuation of the article by Gerhard H. Junker, of the European Research and Engineering Standard Pressed Steel Co, Unbrako. The first part, which appeared in…

Abstract

This is the continuation of the article by Gerhard H. Junker, of the European Research and Engineering Standard Pressed Steel Co, Unbrako. The first part, which appeared in October, covered the mechanism of self loosening. The E‐F‐N curves, surface integrity and test programme will be covered in the final part of this feature.

Details

Aircraft Engineering and Aerospace Technology, vol. 45 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 4 February 2020

Dong Tang, Li Wang, Yang Liu, Ning Liu, Yuzhe Wu and Lie Chen

This paper aims to design and optimize the threaded fastener of leakage current particulate matter (PM) sensor. The corresponding air-tight test is conducted to ensure the…

Abstract

Purpose

This paper aims to design and optimize the threaded fastener of leakage current particulate matter (PM) sensor. The corresponding air-tight test is conducted to ensure the reliability of the installation strategy with screw connection.

Design/methodology/approach

Research on the pressure-deformation curve of seal gasket was conducted and the vibration load of engine was considered for the calculation of the minimum installation pre-tightening force. Simultaneously, the danger threaded section area was calculated, and the carrying capacity was verified. The height of the welding line was studied to ensure the reliability of the application. FEA was carried out to acquire the relationship between local structure size and local stress for continuous improvement of thread connection. The installation torque range was acquired from the torque control principle for the pre-tightening force. The sealing reliability of the connector was proved with leakage.

Findings

The air tightness of the thread connector is proved to be fine. When the pre-tightening force is over 8,000 N, and its length reaches 2 mm, the connector has good reliability at ambient temperature. The tightening torque of 60-74 Nm can guarantee the reliable fixing ability of thread connector, and its plastic non-deformation ability in the process of repeated tearing down.

Originality/value

This paper provides an installation strategy and an optimization of PM sensor, which has a positive effect on the study and the manufacture of PM sensor. It is helpful to further develop PM sensor and after-treatment technology. This kind of real-time monitoring PM sensor needs to be studied further to achieve its commercial application.

Details

Sensor Review, vol. 40 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 February 1973

This is the final part of the article by Gerhard H. Junker of the European Research and Engineering Standard Pressed Steel Co, Unbrako. Previous parts have covered mechanism of…

Abstract

This is the final part of the article by Gerhard H. Junker of the European Research and Engineering Standard Pressed Steel Co, Unbrako. Previous parts have covered mechanism of self loosening, design to prevent self‐loosening and test methods.

Details

Aircraft Engineering and Aerospace Technology, vol. 45 no. 2
Type: Research Article
ISSN: 0002-2667

1 – 10 of 976