Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 1 August 2018

Jiandong Chen, Yinyin Wu, Chong Xu, Malin Song and Xin Liu

Non-fossil fuels are receiving increasing attention within the context of addressing global climate challenges. Based on a review of non-fossil fuel consumption in major countries…

5386

Abstract

Purpose

Non-fossil fuels are receiving increasing attention within the context of addressing global climate challenges. Based on a review of non-fossil fuel consumption in major countries worldwide from 1985 to 2015, the purpose of this paper is to analyze trends for global non-fossil fuel consumption, share of fuel consumption and inequality.

Design/methodology/approach

The similarities were obtained between the logarithmic mean divisia index and the mean-rate-of-change index decomposition analysis methods, and a method was proposed for complete decomposition of the incremental Gini coefficient.

Findings

Empirical analysis showed that: global non-fossil fuel consumption accounts for a small share of the total energy consumption, but presents an increasing trend; the level of global non-fossil fuel consumption inequality is high but has gradually declined, which is mainly attributed to the concentration effect; inequality in global non-fossil fuel consumption is mainly due to the difference between nuclear power and hydropower consumption, but the contributions of nuclear power and hydropower to per capita non-fossil fuel consumption are declining; and population has the greatest influence on global non-fossil fuel consumption during the sampling period.

Originality/value

The main contribution of this study is its analysis of global non-fossil fuel consumption trends, disparities and driving factors. In addition, a general formula for complete index decomposition is proposed and the incremental Gini coefficient is wholly decomposed.

Details

Management Decision, vol. 57 no. 4
Type: Research Article
ISSN: 0025-1747

Keywords

Open Access
Article
Publication date: 19 May 2020

Jukka Sivonen

This study examines how the effects of three predictors, namely left–right political orientation, generalized trust and political trust, on fossil fuel taxation attitudes vary…

1238

Abstract

Purpose

This study examines how the effects of three predictors, namely left–right political orientation, generalized trust and political trust, on fossil fuel taxation attitudes vary between post-communist and other European countries.

Design/methodology/approach

By using European Social Survey (ESS) Round 8 data and ordinary least squares (OLS) regression, this paper studied the effects of the hypothesized predictors on fossil fuel taxation attitudes across post-communist and other European countries. The countries were analyzed both in group and individually.

Findings

The results showed that stronger left-wing orientation, higher generalized trust and higher political trust predict more support for fossil fuel taxation at the country group level in both post-communist and other Europe. However, the effects were generally speaking less consistent and significant in the countries of the post-communist Europe. By and large, the effect of political trust was the most significant and universal.

Originality/value

The findings contribute to the understanding how left–right political orientation and generalized trust have somewhat distinct effects on fossil fuel taxation attitudes in different European country contexts, while the effect of political trust is more universal across the continent.

Details

International Journal of Sociology and Social Policy, vol. 40 no. 11/12
Type: Research Article
ISSN: 0144-333X

Keywords

Open Access
Article
Publication date: 18 November 2021

Joanna Grochowalska, Piotr Jaworski, Łukasz Jan Kapusta and Jerzy Kowalski

In the cylinders of a marine diesel engine, self-ignition occurs in a very short time after the fuel injection into the combustion chamber. Therefore, this paper aims to develop a…

Abstract

Purpose

In the cylinders of a marine diesel engine, self-ignition occurs in a very short time after the fuel injection into the combustion chamber. Therefore, this paper aims to develop a model of diesel fuel spray for the early stage of fuel spray in the marine diesel engine. The main technical aspects such as nozzle diameter of the marine engine injector and backpressure in the combustion chamber were taken into consideration.

Design/methodology/approach

In this paper, laboratory experimental studies were carried out to determine parameters of fuel spray in an early stage of injection in the marine diesel engine. The optical measuring Mie scattering technique was used to record the fuel injection process. The working space was a constant volume chamber. The backpressure parameters in the constant volume chamber were the same as during the operation of the marine diesel engine. Based on the experimental studies and important Hiroyasu and Arai models of fuel spray presented in literature was proposed new model of fuel spray parameters for marine diesel injectors.

Findings

In this paper, the proposed new model of the two main parameters described fuel spray evolution”: new model of spray tip penetration (STP) and spray cone angle (SCA). New model propagation of fuel STP in time was included the influence of nozzle diameter and backpressure. The proposed model has a lower error, about 15%–34%, than the model of Hiroyasu and Arai. Moreover, a new model of the evolution over time of the SCA is developed.

Research limitations/implications

In the future research of fuel spray process must be taken influence of the fuel temperature. Diesel fuel has a different density and viscosity in dependence of fuel temperature. Therefore are predicted of the expansion about influence of fuel temperature, new model of fuel spray for a marine diesel engine. The main limitations occurring in the research are not possible to carry out the research while real operation marine diesel engine.

Originality/value

An experimental test was carried out for a real fuel injector of a marine diesel engine. Design parameters and fuel injection parameters were selected on the basis of the actual one. In the literature, SCA is defined as a constant parameter for the specific preliminary data. A new model for the early stage of fuel spray of SCA propagation in time has been proposed. The early stage of fuel spray is especially important, because in this time comes in there to fuel self-ignition.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 1 June 2021

S.V. Khandal, T.M. Yunus Khan, Sarfaraz Kamangar, Maughal Ahmed Ali Baig and Salman Ahmed N J

The different performance tests were conducted on diesel engine compression ignition (CI) mode and CRDi engine.

1123

Abstract

Purpose

The different performance tests were conducted on diesel engine compression ignition (CI) mode and CRDi engine.

Design/methodology/approach

The CI engine was suitably modified to CRDi engine with Toroidal re-entrant combustion chamber (TRCC) and was run in dual-fuel (DF) mode. Hydrogen (H2) was supplied at different flow rates during the suction stroke, and 0.22 Kg/h of hydrogen fuel flow rate (HFFR) was found to be optimum. Diesel and biodiesel were used as pilot fuels. The CRDi engine with DF mode was run at various injection pressures, and 900 bar was found to be optimum injection pressure (IP) with 10o before top dead center (bTDC) as fuel injection timing (IT).

Findings

These operating engine conditions increased formation of oxides of nitrogen (NOx), which were reduced by exhaust gas recycle (EGR). With EGR of 15%, CRDi engine resulted in 12.6% lower brake thermal efficiency (BTE), 5.5% lower hydrocarbon (HC), 7.7% lower carbon monoxide (CO), 26% lower NOx at 80% load as compared to the unmodified diesel engine (CI mode).

Originality/value

The current research is an effort to study and evaluate the performance of CRDi engine in DF mode with diesel-H2 and BCPO-H2 fuel combinations with TRCC.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 22 January 2024

María Carmona, Rafael Casado González, Aurelio Bermúdez, Miguel Pérez-Francisco, Pablo Boronat and Carlos Calafate

In the aerial transportation area, fuel costs are critical to the economic viability of companies, and so urgent measures should be adopted to avoid any unnecessary increase in…

Abstract

Purpose

In the aerial transportation area, fuel costs are critical to the economic viability of companies, and so urgent measures should be adopted to avoid any unnecessary increase in operational costs. In particular, this paper addresses the case of missed approach manouevres, showing that it is still possible to optimize the usual procedure.

Design/methodology/approach

The costs involved in a standard procedure following a missed approach are analysed through a simulation model, and they are compared with the improvements achieved with a fast reinjection scheme proposed in a prior work.

Findings

Experimental results show that, for a standard A320 aircraft, fuel savings ranging from 55% to 90% can be achieved through the reinjection method.

Originality/value

To the best of the authors’ knowledge, this work is the first study in the literature addressing the fuel savings benefits obtained by applying a reinjection technique for missed approach manoeuvres.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 8 June 2023

Amer Jazairy, Timo Pohjosenperä, Jaakko Sassali, Jari Juga and Robin von Haartman

This research examines what motivates professional truck drivers to engage in eco-driving by linking their self-reports with objective driving scores.

1659

Abstract

Purpose

This research examines what motivates professional truck drivers to engage in eco-driving by linking their self-reports with objective driving scores.

Design/methodology/approach

Theory of Planned Behavior (TPB) is illustrated in an embedded, single-case study of a Finnish carrier with 17 of its truck drivers. Data are obtained through in-depth interviews with drivers, their fuel-efficiency scores generated by fleet telematics and a focus group session with the management.

Findings

Discrepancies between drivers’ intentions and eco-driving behaviors are illustrated in a two-by-two matrix that classifies drivers into four categories: ideal eco-drivers, wildcards, wannabes and non-eco-drivers. Attitudes, subjective norms and perceived behavioral control are examined for drivers within each category, revealing that drivers’ perceptions did not always align with the reality of their driving.

Research limitations/implications

This study strengthens the utility of TPB through data triangulation while also revealing the theory’s inherent limitations in elucidating the underlying causes of its three antecedents and their impact on the variance in driving behaviors.

Practical implications

Managerial insights are offered to fleet managers and eco-driving solution providers to stipulate the right conditions for drivers to enhance fuel-efficiency outcomes of transport fleets.

Originality/value

This is one of the first studies to give a voice to professional truck drivers about their daily eco-driving practice.

Details

International Journal of Physical Distribution & Logistics Management, vol. 53 no. 11
Type: Research Article
ISSN: 0960-0035

Keywords

Open Access
Article
Publication date: 21 August 2019

Xinning Li, Kun Fan, Lu Wang and Lang Zhou

The purpose of this paper is to design a contract to coordinate the biomass molding fuel supply chain consisting of a supplier with uncertain supply and a producer with cyclical…

Abstract

Purpose

The purpose of this paper is to design a contract to coordinate the biomass molding fuel supply chain consisting of a supplier with uncertain supply and a producer with cyclical demand as well as improve the profit of this supply chain.

Design/methodology/approach

In this paper, the supply chain model was build and all the variables and assumptions are set. Stackelberg game model was used to analyze and solve the problem. Furthermore, the authors give numerical examples and result analysis on the basis of data coming from field study and online information about a real biomass fuel supply chain.

Findings

The wholesale price with shortage penalty contract the authors proposed can coordinate the supply chain. And as the dominator of the supply chain, the producer can realize the redistribution of profits within the supply chain by determine the contract parameters.

Research limitations/implications

This one-to-one supply chain is a basic of complex supply chain system. Multi-to-one, one-to-multi and multi-to-multi supply chain can be studied in the future.

Originality/value

The results obtained in this paper can be used as a reference for enterprises in biomass energy supply chain to make contracts and realize the long-term co-operations among supply chain members.

Details

Forestry Economics Review, vol. 1 no. 1
Type: Research Article
ISSN: 2631-3030

Keywords

Open Access
Article
Publication date: 10 January 2019

Hojin Jung, Kyoung-min Kwon and Gun Jea Yu

Using panel data on gasoline and grocery transactions in Korea, the purpose of this paper is to empirically explore the effect of a retail chain store’s establishment of on-site…

7194

Abstract

Purpose

Using panel data on gasoline and grocery transactions in Korea, the purpose of this paper is to empirically explore the effect of a retail chain store’s establishment of on-site fuel sales. The empirical analyses present strong empirical evidence that the sale of fuel had statistically and economically significant effect on retail store traffic and revenue in the short run. However, the effect did not remain significant in the longer run. To explain the dramatic decrease in the effect of the fuel sale, the authors consider the enhanced competition in the local gasoline retail industry and examine cross-sectional price variations at the station level. The results suggest that the increased competition led to the reduction in the price dispersion across stations and thereby to an increase in consumer welfare.

Design/methodology/approach

Using a linear specification that has traditionally been used to model retail chain data, the authors developed a series of difference-in-differences models. This technique is ideal for estimating the effect of a treatment in the presence of possible selection bias and has been widely employed in many social-science studies on policy intervention.

Findings

In a certain environment, introducing fuel sales did not increase retail chain store traffic or revenue in the long run, despite having statistically and economically significant effects in the short run. The results document empirical evidence of myopic management in a common marketing practice, which often leads to a negative impact on the firm value in the long run.

Research limitations/implications

The span of data and sample size were limited to meet the company’s data protection policy.

Practical implications

Considering that many of developed countries are characterized by a gasoline retail environment similar to that which is investigated in this paper, the authors believe that the implications of the results are particularly valid for practitioners and policy makers.

Social implications

The findings document empirical evidence of myopic management in a common marketing practice, which often leads to a negative impact on the firm value in the long run. Marketing researchers should make efforts in establishing metrics to help identify myopic management decision.

Originality/value

This paper addresses an interesting and practical issue related to the effects of the introduction of gasoline sales by a supercenter store on its store traffic.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 31 no. 1
Type: Research Article
ISSN: 1355-5855

Keywords

Open Access
Article
Publication date: 4 May 2020

José Pedro Soares Pinto Leite and Mark Voskuijl

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to…

8020

Abstract

Purpose

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid-electric aircraft – aircraft where the propulsion system contains power systems driven by electricity and power systems driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft, including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management.

Design/methodology/approach

To address this problem the dynamic programming (DP) method for optimal control problems was used and, together with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory.

Findings

The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency was also found.

Originality/value

The novelty of this work comes from the application of DP for energy management to a variable weight system which includes energy recovery via a propeller.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 10 June 2021

Jaeyoung Cha, Juyeol Yun and Ho-Yon Hwang

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with…

1919

Abstract

Purpose

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with different types of engines.

Design/methodology/approach

The vehicle configuration was devised considering the dimensions and operational restrictions of the roads, runways and parking lots in South Korea. A folding wing design was adopted for road operations and parking. The propulsion designs considered herein use gasoline, diesel and hybrid architectures for longer-range missions. The sizing point of the roadable PAV that minimizes the wing area was selected, and the rate of climb, ground roll distance, cruise speed and service ceiling requirements were met. For various engine types and mission profiles, the performances of differently sized PAVs were compared with respect to the MTOW, wing area, wing span, thrust-to-weight ratio, wing loading, power-to-weight ratio, brake horsepower and fuel efficiency.

Findings

Unlike automobiles, the weight penalty of the hybrid system because of the additional electrical components reduced the fuel efficiency considerably. When the four engine types were compared, matching the total engine system weight, the internal combustion (IC) engine PAVs had better fuel efficiency rates than the hybrid powered PAVs. Finally, a gasoline-powered PAV configuration was selected as the final design because it had the lowest MTOW, despite its slightly worse fuel efficiency compared to that of the diesel-powered engine.

Research limitations/implications

Although an electric aircraft powered only by batteries most capitalizes on the operating cost, noise and emissions benefits of electric propulsion, it also is most hampered by range limitations. Air traffic integration or any safety, and noise issues were not accounted in this study.

Practical implications

Aircraft sizing is a critical aspect of a system-level study because it is a prerequisite for most design and analysis activities, including those related to the internal layout as well as cost and system effectiveness analyses. The results of this study can be implemented to design a PAV.

Social implications

This study can contribute to the establishment of innovative PAV concepts that can alleviate today’s transportation problems.

Originality/value

This study compared the sizing results of PAVs with hybrid engines with those having IC engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 1000