Search results

1 – 10 of over 1000
Article
Publication date: 7 February 2024

Paul O. Ukachi, Mathias Ekpu, Sunday C. Ikpeseni and Samuel O. Sada

The purpose of this study is to assess the performance of fuel blends containing ethanol and gasoline in spark ignition engines. The aim is to explore alternative fuels that can…

Abstract

Purpose

The purpose of this study is to assess the performance of fuel blends containing ethanol and gasoline in spark ignition engines. The aim is to explore alternative fuels that can enhance performance while minimizing or eliminating adverse environmental impacts, particularly in the context of limited fossil fuel availability and the need for sustainable alternatives.

Design/methodology/approach

The authors used the Ricardo Wave software to evaluate the performance of fuel blends with varying ethanol content (represented as E0, E10, E25, E40, E55, E70, E85 and E100) in comparison to gasoline. The assessment involved different composition percentages and was conducted at various engine speeds (1,500, 3,000, 4,500 and 6,000 rpm). This methodology aims to provide a comprehensive understanding of how different ethanol-gasoline blends perform under different conditions.

Findings

The study found that, across all fuel blends, the highest brake power (BP) and the highest brake-specific fuel consumption (BSFC) were observed at 6,000 rpm. Additionally, it was noted that the presence of ethanol in gasoline fuel blends has the potential to increase both the BP and BSFC. These findings suggest that ethanol can positively impact the performance of spark-ignition engines, highlighting its potential as an alternative fuel.

Originality/value

This research contributes to the ongoing efforts in the automotive industry to find sustainable alternative fuels. The use of Ricardo Wave software for performance assessment and the comprehensive exploration of various ethanol-gasoline blends at different engine speeds add to the originality of the study. The emphasis on the potential of ethanol to enhance engine performance provides valuable insights for motor vehicle manufacturers and researchers working on alternative fuel solutions.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 5 December 2023

Thalis P.V. Zis

This paper focusses on the aftermath of disruptions and the importance of the two largest canals (Suez and Panama), commenting on how during the pandemic the canal fees were…

Abstract

Purpose

This paper focusses on the aftermath of disruptions and the importance of the two largest canals (Suez and Panama), commenting on how during the pandemic the canal fees were lowered. Considering the ongoing efforts to decarbonize shipping, some of the ongoing disruptions will help reach these objectives faster.

Design/methodology/approach

Following a literature review of route choice in shipping, and a presentation of significant disruptions in recent years, the author deploys a simplified fuel consumption model and conduct case study analyses to compare different routes environmentally and economically.

Findings

The results explain why at times of low fuel prices as in 2020, canals provided discounts to entice ship operators to keep transiting these, instead of opting for longer routes. Considering the ongoing repercussions of the pandemic in supply chains, as well as the potential introduction of market-based measures in shipping, the value of transiting canals will be much higher in the coming years.

Research limitations/implications

The main limitation in this work is that the author used the publicly available information on canal tolls, for the different ship types examined.

Practical implications

The envisioned model is simple, and it can be readily used for any ship and route (port to port) combination available, if ship data are available to researchers.

Social implications

It is possible that canal tolls will increase, to account for the additional environmental benefits brought to ship operators.

Originality/value

The methodology is simple and transferable, and the author proposes several interesting research questions for follow-up work.

Details

Maritime Business Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2397-3757

Keywords

Article
Publication date: 9 October 2023

Gokulnath R. and Booma Devi

Diesel has traditionally been considered the best-suited and most widely used fuel in various sectors, including manufacturing industries, power production, automobiles and…

Abstract

Purpose

Diesel has traditionally been considered the best-suited and most widely used fuel in various sectors, including manufacturing industries, power production, automobiles and transportation. However, with the ongoing crisis of fossil fuel inadequacy, the search for alternative fuels and their application in these sectors has become increasingly important. One particularly interesting and beneficial alternative fuel is biodiesel derived from bio sources.

Design/methodology/approach

In this research, an attempt was made to use biodiesel in an unconventional micro gas turbine engine. It will remove the concentric use of diesel engines for power production by improving fuel efficiency as well as increasing the power production rate. Before the fuel is used enormously, it has to be checked in many ways such as performance, emission and combustion analysis experimentally.

Findings

In this paper, a detailed experimental study was made for the use of Spirulina microalgae biodiesel in a micro gas turbine. A small-scale setup with the primary micro gas turbine and secondary instruments such as a data acquisition system and AVL gas analyser. The reason for selecting the third-generation microalgae is due to its high lipid and biodiesel production rate. For the conduction of experimental tests, certain conditions were followed in addition that the engine rotating rpm was varied from 4,000, 5,000 and 6,000 rpm. The favourable and predicted results were obtained with the use of microalgae biodiesel.

Originality/value

The performance and combustion results were not exactly equal or greater for biodiesel blends but close to the values of pure diesel; however, the reduction in the emission of CO was at the appreciable level for the used spirulina microalgae biodiesel. The emission of nitrogen oxides and carbon dioxide was a little higher than the use of pure diesel. This experimental analysis results proved that the use of spirulina microalgae biodiesel is both economical and effective replacement for fossil fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 May 2023

Taraprasad Mohapatra and Sudhansu Sekhar Mishra

The study aims to verify and establish the result of the most suitable optimization approach for higher performance and lower emission of a variable compression ratio (VCR) diesel…

Abstract

Purpose

The study aims to verify and establish the result of the most suitable optimization approach for higher performance and lower emission of a variable compression ratio (VCR) diesel engine. In this study, three types of test fuels are taken and tested in a variable compression ratio diesel engine (compression ignition). The fuels used are conventional diesel fuel, e-diesel (85% diesel-15% bioethanol) and nano-fuel (85% diesel-15% bioethanol-25 ppm Al2O3). The effect of bioethanol and nano-particles on performance, emission and cost-effectiveness is investigated at different load and compression ratios (CRs). The optimum performance and lower emission of the engine are evaluated and compared with other optimization methods.

Design/methodology/approach

The test engine is run by diesel, e-diesel (85% diesel-15% bioethanol) and nano-fuel (85% diesel-15% bioethanol-25 ppm Al2O3) in three different loadings (4 kg, 8 kg and 12 kg) and CR of 14, 16 and 18, respectively. The optimum value of energy efficiency, exergy efficiency, NOX emission and relative cost variation are determined against the input parameters using Taguchi-Grey method and confirmed by response surface methodology (RSM) technique.

Findings

Using Taguchi-Grey method, the maximum energy and exergy efficiency, minimum % relative cost variation and NOX emission are 24.64%, 59.52%, 0 and 184 ppm, respectively, at 4 kg load, 18 CR and fuel type of nano-fuel. Using RSM technique, maximum energy and exergy efficiency are 24.8% and 62.9%, and minimum NOX emission and % cost variation are 208.4 ppm and –6.5, respectively, at 5.2 kg load, 18 CR and nano-fuel. The RSM is suggested as the most appropriate technique for obtaining maximum energy and exergy efficiency, and minimum % relative cost; however, for lowest possible NOX emission, the Taguchi-Grey method is the most appropriate.

Originality/value

Waste rice straw is used to produce bioethanol. 4-E analysis, i.e. energy, exergy, emission and economic analysis, has been carried out, optimized and compared.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 August 2023

Taraprasad Mohapatra, Sudhansu Sekhar Mishra, Mukesh Bathre and Sudhansu Sekhar Sahoo

The study aims to determine the the optimal value of output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of…

Abstract

Purpose

The study aims to determine the the optimal value of output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of operation experimentally. The output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of operation experimentally. The performance parameters like brake thermal efficiency (BTE) and brake specific energy consumption (BSEC), whereas CO emission, HC emission, CO2 emission, NOx emission, exhaust gas temperature (EGT) and opacity are the emission parameters measured during the test. Tests are conducted for 2, 6 and 10 kg of load, 16.5 and 17.5 of CR.

Design/methodology/approach

In this investigation, the first engine was fueled with 100% diesel and 100% Calophyllum inophyllum oil in single-fuel mode. Then Calophyllum inophyllum oil with producer gas was fed to the engine. Calophyllum inophyllum oil offers lower BTE, CO and HC emissions, opacity and higher EGT, BSEC, CO2 emission and NOx emissions compared to diesel fuel in both fuel modes of operation observed. The performance optimization using the Taguchi approach is carried out to determine the optimal input parameters for maximum performance and minimum emissions for the test engine. The optimized value of the input parameters is then fed into the prediction techniques, such as the artificial neural network (ANN).

Findings

From multiple response optimization, the minimum emissions of 0.58% of CO, 42% of HC, 191 ppm NOx and maximum BTE of 21.56% for 16.5 CR, 10 kg load and dual fuel mode of operation are determined. Based on generated errors, the ANN is also ranked for precision. The proposed ANN model provides better prediction with minimum experimental data sets. The values of the R2 correlation coefficient are 1, 0.95552, 0.94367 and 0.97789 for training, validation, testing and all, respectively. The said biodiesel may be used as a substitute for conventional diesel fuel.

Originality/value

The blend of Calophyllum inophyllum oil-producer gas is used to run the diesel engine. Performance and emission analysis has been carried out, compared, optimized and validated.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 April 2024

Anam Ul Haq Ganie and Masroor Ahmad

The purpose of this study is to assess the influence of institutional quality (IQ), fossil fuel efficiency, structural change and renewable energy (RE) consumption on carbon…

Abstract

Purpose

The purpose of this study is to assess the influence of institutional quality (IQ), fossil fuel efficiency, structural change and renewable energy (RE) consumption on carbon efficiency.

Design/methodology/approach

This research uses an econometric approach, more specifically the Autoregressive Distributed Lag model, to examine the relationship between structural change, RE consumption, IQ, fossil fuel efficiency and carbon efficiency in India from 1996 to 2019.

Findings

This study finds the positive contributions of variables like fossil fuel efficiency, technological advancement, structural transformation, IQ and increased RE consumption in fostering environmental development through enhanced carbon efficiency. Conversely, this study emphasises the negative contribution of trade openness on carbon efficiency. These findings provide concise insights into the dynamics of factors impacting carbon efficiency in India.

Research limitations/implications

This study's exclusive focus on India limits the generalizability of findings. Future studies should include a broader range of variables impacting various nations' carbon efficiency. Furthermore, it is worth noting that this study examines renewable and fossil fuel efficiency aggregated. Future research endeavours could yield more specific policy insights by conducting analyses at a disaggregated level, considering individual energy sources such as wind, solar, coal and oil. Understanding how the efficiency of each energy source influences carbon efficiency could lead to more targeted and practical policy recommendations.

Originality/value

To the best of the authors’ knowledge, this study addresses a significant gap in the existing literature by being the first empirical investigation into the effects of IQ, fossil fuel efficiency, structural change and RE consumption on carbon efficiency. Unlike prior research, the authors consider a comprehensive IQ index, providing a more holistic perspective. The use of a comprehensive composite index for IQ, coupled with the focus on fossil fuel efficiency and structural change, distinguishes this study from previous research, contributing valuable insights into the intricate dynamics shaping India's path towards enhanced carbon efficiency, an area relatively underexplored in the existing literature.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 19 March 2024

Naseer Khan, Zeeshan Gohar, Faisal Khan and Faisal Mehmood

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and…

Abstract

Purpose

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and environment-friendly energy sources. This paper presents the analysis of a photovoltaic (PV) with an adaptive neuro-fuzzy inference system (ANFIS) algorithm, solid oxide fuel cell (SOFC) and a battery storage scheme incorporated for EV CS in a stand-alone mode. In previous studies, either the hydrogen fuel of SOFC or the irradiance is controlled using artificial neural network. These parameters are not controlled simultaneously using an ANFIS-based approach. The ANFIS-based stand-alone hybrid system controlling both the fuel flow of SOFC and the irradiance of PV is discussed in this paper.

Design/methodology/approach

The ANFIS algorithm provides an efficient estimation of maximum power (MP) to the nonlinear voltage–current characteristics of a PV, integrated with a direct current–direct current (DC–DC) converter to boost output voltage up to 400 V. The issue of fuel starvation in SOFC due to load transients is also mitigated using an ANFIS-based fuel flow regulator, which robustly provides fuel, i.e. hydrogen per necessity. Furthermore, to ensure uninterrupted power to the CS, PV is integrated with a SOFC array, and a battery storage bank is used as a backup in the current scenario. A power management system efficiently shares power among the aforesaid sources.

Findings

A comprehensive simulation test bed for a stand-alone power system (PV cells and SOFC) is developed in MATLAB/Simulink. The adaptability and robustness of the proposed control paradigm are investigated through simulation results in a stand-alone hybrid power system test bed.

Originality/value

The simulation results confirm the effectiveness of the ANFIS algorithm in a stand-alone hybrid power system scheme.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 October 2023

Hendra Riofita

This study aims to develop customer trust through information quality, customer awareness, and perceived value. This study is motivated by the hustle and bustle occurred as the…

Abstract

Purpose

This study aims to develop customer trust through information quality, customer awareness, and perceived value. This study is motivated by the hustle and bustle occurred as the result of the socialization of MyPertamina, a digital payment service for subsidized fuel customers in 11 areas of 4 provinces in Indonesia. The hustle and bustle can be viewed as customer distrust of MyPertamina. However, customer trust is a business success key. Is MyPertamina a solution or problem maker for customers to buy subsidized fuel?

Design/methodology/approach

The design of this study is survey. Primary data are collected through questionnaires sent to subsidized fuel customers in the socialization areas of MyPertamina. The data are processed using SPSS and Amos programs.

Findings

PV, IQ and CA, respectively, can develop CT on MyPertamina. Although the PV cannot strengthen the effect of CA on CT, the construct can strengthen the effect of IQ on CT.

Practical implications

Indonesian Government via Pertamina, a state-owned enterprise, must develop CT through IQ, CA and PV to succeed the application of MyPertamina.

Originality/value

This study develops IQ, CA and PV based on technology acceptance model and theory of reasoned action to develop CT on MyPertamina.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 15 February 2023

Mehmet Necati Cizrelioğullari, Tapdig Veyran Imanov, Tugrul Gunay and Aliyev Shaiq Amir

Temperature anomalies in the upper troposphere have become a reality as a result of global warming, which has a noticeable impact on aircraft performance. The purpose of this…

Abstract

Purpose

Temperature anomalies in the upper troposphere have become a reality as a result of global warming, which has a noticeable impact on aircraft performance. The purpose of this study is to investigate the total air temperature (TAT) anomaly observed during the cruise level and its impact on engine parameter variations.

Design/methodology/approach

Empirical methodology is used in this study, and it is based on measurements and observations of anomalous phenomena on the tropopause. The primary data were taken from the Boeing 747-8F's enhanced flight data recorder, which refers to the quantitative method, while the qualitative method is based on a literature review and interviews. The GEnx Integrated Vehicle Health Management system was used for the study's evaluation of engine performance to support the complete range of operational priorities throughout the entire engine lifecycle.

Findings

The study's findings indicate that TAT and SAT anomalies, which occur between 270- and 320-feet flight level, have a substantial impact on aircraft performance at cruise altitude and, as a result, on engine parameters, specifically an increase in fuel consumption and engine exhaust gas temperature values. The TAT and Ram Rise anomalies were the focus of the atmospheric deviations, which were assessed as major departures from the International Civil Aviation Organizations–defined International Standard Atmosphere, which is obvious on a positive tendency and so goes against the norms.

Research limitations/implications

Necessary fixed flight parameters gathered from the aircraft's enhanced airborne flight recorder (EAFR) via Aeronautical Radio Incorporated (ARINC) 664 Part 7 at a certain velocity and altitude interfacing with the diagnostic program direct parameter display (DPD), allow for analysis of aircraft performance in a real-time frame. Thus, processed data transmits to the ground maintenance infrastructure for future evaluation and for proper maintenance solutions.

Originality/value

A real-time analysis of aircraft performance is possible using the diagnostic program DPD in conjunction with necessary fixed flight parameters obtained from the aircraft's EAFR via ARINC 664 Part 7 at a specific speed and altitude. Thus, processed data is transmitted to the ground infrastructure for maintenance to be evaluated in the future and to find the best maintenance fixes.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 March 2024

Yan Zhou and Chuanxu Wang

Disruptions at ports may destroy the planned ship schedules profoundly, which is an imperative operation problem that shipping companies need to overcome. This paper attempts to…

Abstract

Purpose

Disruptions at ports may destroy the planned ship schedules profoundly, which is an imperative operation problem that shipping companies need to overcome. This paper attempts to help shipping companies cope with port disruptions through recovery scheduling.

Design/methodology/approach

This paper studies the ship coping strategies for the port disruptions caused by severe weather. A novel mixed-integer nonlinear programming model is proposed to solve the ship schedule recovery problem (SSRP). A distributionally robust mean conditional value-at-risk (CVaR) optimization model was constructed to handle the SSRP with port disruption uncertainties, for which we derive tractable counterparts under the polyhedral ambiguity sets.

Findings

The results show that the size of ambiguity set, confidence level and risk-aversion parameter can significantly affect the optimal values, decision-makers should choose a reasonable parameter combination. Besides, sailing speed adjustment and handling rate adjustment are effective strategies in SSRP but may not be sufficient to recover the schedule; therefore, port skipping and swapping are necessary when multiple or longer disruptions occur at ports.

Originality/value

Since the port disruption is difficult to forecast, we attempt to take the uncertainties into account to achieve more meaningful results. To the best of our knowledge, there is barely a research study focusing on the uncertain port disruptions in the SSRP. Moreover, this is the first paper that applies distributionally robust optimization (DRO) to deal with uncertain port disruptions through the equivalent counterpart of DRO with polyhedral ambiguity set, in which a robust mean-CVaR optimization formulation is adopted as the objective function for a trade-off between the expected total costs and the risk.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 1000