Search results

1 – 10 of 11
Article
Publication date: 30 September 2014

C. Pornet, S. Kaiser, A.T. Isikveren and M. Hornung

The aim of this paper is to assess the potential of fuel-battery hybrid narrow-body (180PAX) transport aircraft according to different design ranges for an entry-into-service…

1158

Abstract

Purpose

The aim of this paper is to assess the potential of fuel-battery hybrid narrow-body (180PAX) transport aircraft according to different design ranges for an entry-into-service (EIS) of 2035.

Design/methodology/approach

The philosophy used in the design of the twin-engine fuel-battery hybrid concept is to use the power of an electric motor during cruise to drive a single propulsive device, whereas the other one is powered conventionally by an advanced gas turbine. A methodology for the sizing and performance assessment of hybrid energy aircraft was previously proposed by the authors. Based on this methodology, the overall sizing effects at aircraft level are considered to size the hybrid aircraft to different range applications. To evaluate the hybrid concept, performance was contrasted against a conventional aircraft projected to EIS 2035 and sized for identical requirements. Additionally, sensitivity of the prospects against different battery technology states was analysed.

Findings

The best suited aircraft market for the application of the fuel-battery hybrid transport aircraft concept considered is the regional segment. Under the assumption of a battery-specific energy of 1.5 kWh/kg, block fuel reduction up to 20 per cent could be achieved concurrently with a gate-to-gate neutral energy consumption compared to an advanced gas-turbine aircraft. However, a large increase in maximum take-off weight (MTOW) occurs resulting from battery weight, the additional electrical system weight, and the cascading sizing effects. It strongly counteracts the benefit of the hybrid-electric propulsion technology used in this concept for lower battery-specific energy and for longer design ranges.

Practical implications

The findings will contribute to the evaluation of the feasibility and impact of hybrid energy transport aircraft as potential key enablers of the European and US aeronautical program goals towards 2035.

Originality/value

The paper draws its value from the consideration of the overall sizing effects at aircraft level and in particular the impact of the hybrid-electric propulsion system to investigate the prospects of fuel-battery hybrid narrow-body transport aircraft sized at different design ranges.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 4 May 2020

José Pedro Soares Pinto Leite and Mark Voskuijl

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid

8042

Abstract

Purpose

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid-electric aircraft – aircraft where the propulsion system contains power systems driven by electricity and power systems driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft, including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management.

Design/methodology/approach

To address this problem the dynamic programming (DP) method for optimal control problems was used and, together with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory.

Findings

The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency was also found.

Originality/value

The novelty of this work comes from the application of DP for energy management to a variable weight system which includes energy recovery via a propeller.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 September 2014

C. Pornet, S. Kaiser and C. Gologan

The aim of the paper is to establish the COst-Specific Air Range (COSAR) as a new figure-of-merit based on the cost of energy to optimise the flight profile of a hybrid energy…

Abstract

Purpose

The aim of the paper is to establish the COst-Specific Air Range (COSAR) as a new figure-of-merit based on the cost of energy to optimise the flight profile of a hybrid energy aircraft.

Design/methodology/approach

After reviewing the expression and the application of the specific air range (SAR) and of the energy-specific air range (ESAR), the need of a new figure-of-merit for flight technique optimisation of hybrid energy aircraft is motivated. Based on the specific cost of the energies consumed, the mathematical expression of COSAR is derived. To enable optimum economics operations, a cost index (CI) derivation is introduced for a variety of hybrid-electric concepts to consider the additional time-related cost. The application of COSAR and of the CI is demonstrated for cruise optimisation of a hybrid-electric retrofit aircraft concept.

Findings

As a consequence of the consumption of multiple energy sources in a hybrid aircraft, optimisation according to the objective functions SAR and ESAR leads to minimum in-flight CO2 emissions and minimum energy consumption for a given stage length. While the optimisation of a single energy source aircraft according to these figures-of-merit directly results in minimum energy cost for a given unit range, this statement is no longer true for hybrid-energy aircraft. Consequently, introducing a new figure-of-merit established on the specific cost of the energies consumed enables flight technique optimisation for minimum energy cost of hybrid-energy aircraft. Additionally, the related time-cost is taken into account by means of a CI definition for minimum operating cost.

Practical implications

COSAR may serve as an alternative to SAR used today as the standard figure-of-merit for fuel optimised flight profile. Using COSAR and the CI allow airlines to adapt the flight profiles of hybrid-energy aircraft fleets according to the energy market price and their related cost of time to determine optimum economical flight profile.

Originality/value

Using COSAR as a figure-of-merit, the flight profile of hybrid energy aircraft can be optimised for minimum energy cost. Time-related costs are considered for optimum operating economics by utilisation of the CI definition for hybrid energy aircraft.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Content available

Abstract

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 1748-8842

Article
Publication date: 3 August 2022

Dominik Quillet, Vincent Boulanger, David Rancourt, Richard Freer and Pierre Bertrand

Parallel hybrid electric (HE) propulsion retrofit is a promising alternative to reduce fuel burn of aircraft operating on short regional flights. However, if the batteries are…

Abstract

Purpose

Parallel hybrid electric (HE) propulsion retrofit is a promising alternative to reduce fuel burn of aircraft operating on short regional flights. However, if the batteries are depleted at the end of the mission, the hybrid powertrain designs with downsized gas turbines (GTs) and additional electric motors might not meet the one-engine inoperative (OEI) missed approach climb performance required by the certification. Alternatively, hybrid designs using the original full-size GT can perform one engine climb without electric assistance. This paper aims to evaluate the impact of overshoot climb requirements on powertrain design and performance comparing the two design approaches.

Design/methodology/approach

An aircraft-level parametric mission analysis model is used to evaluate aircraft performance combined with an optimization framework including multiple constraints. An indirect approach using metamodels is used to optimize powertrain sizing and operation strategy.

Findings

Considering OEI climb requirements, no benefits were found using a design with downsized GTs. Equivalent fuel burns were found for hybrid designs that keep the original size GTs, but do not require electric energy for the OEI overshoot at the end of the mission. Then, it is recommended to size the GT to maintain the emergency climb capabilities with no electric assistance to ensure power availability regardless of remaining battery energy.

Originality/value

This work introduces a new perspective on parallel HE sizing with consideration for the dependency of power capability at aircraft level on the electric energy availability in case of critical mission scenarios such as overshoot climb at the end of the mission.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 September 2014

A.T. Isikveren, S. Kaiser, C. Pornet and P.C. Vratny

The aim of this study was to first establish foundational algebraic expressions that parametrically describe any advanced dual-energy storage–propulsion–power system (DESPPS) and…

1026

Abstract

Purpose

The aim of this study was to first establish foundational algebraic expressions that parametrically describe any advanced dual-energy storage–propulsion–power system (DESPPS) and then proceed to declare the array of fundamental independent variables necessary for the sizing and optimisation of such systems. Upon procurement of a pre-design-level integrated aircraft performance model and the subsequent verification against previously published high-end low-fidelity generated results, opportunity was taken in formulating a set of battery-based DESPPS related design axioms and sizing heuristics.

Design/methodology/approach

Derivation of algebraic expressions related to describing DESPPS architectures are based on first principles. Integrated performance modelling by way of full analytical fractional change transformations anchored according to a previously published Energy Specific Air Range (ESAR) figure-of-merit originally derived using the Breguet–Coffin differential equation for vehicular efficiency. Weights prediction of sub-systems that constitute the entire aircraft including DESPPS constituents emphasises an analytical foundation with minimal implementation of linear correlation factors or coefficients of proportionality. An iterative maximum take-off weight build-up algorithm emphasising expedient and stable convergence was fashioned. All prediction methods pertaining to integrated performance were verified according to previously published battery-based DESPPS results utilising high-end low-fidelity methods.

Findings

For all types of DESPPS, two new fundamental independent non-dimensional variables were declared: the Supplied Power Ratio (related to converted power afforded by each energy carrier); and, the Activation Ratio (describing the relative nature of utilisation with respect to time afforded by the motive power device associated with each energy source). For a given set of standalone sub-system energy conversion efficiencies, the parametric descriptor of degree-of-hybridisation (DoH) for Power was found to be solely a function of the Supplied Power Ratio, whereas in contrast, the DoH for Energy was found to be a more complex synthetic function described by comingling of Supplied Power Ratio and the Activation Ratio. Upon examination of the integrated aircraft performance model derived in this treatise, for purposes of investigating CO2-emissions reduction potential for battery-based DESPPS using kerosene as one of the energy sources, one salient observation was maximising the ESAR figure-of-merit is not an appropriate objective or intermediary function for future optimisation work. It was found maximising block fuel reduction through the use of maximum ESAR would lead to ever diminishing design ranges and curtailment of the payload-range working capacity of the aircraft.

Practical implications

Opportunity is now given to design and optimise aircraft utilising any type of DESPPS architecture. It was established that designing for battery-based DESPPS aircraft can be achieved effectively in a two-stage process that may not require aircraft morphologies more exotic than the so-called “wing-and-tube”. Firstly, a suitably projected state-of-the-art aircraft with solely advanced gas-turbine technology for the propulsion and power system needs to be produced. Thereafter, a revised version of this baseline projected aircraft now using DESPPS architecture should be conceived. A recommendation related to CO2-emissions reduction potential for battery-based DESPPS using kerosene as one of the energy sources is that during optimisation work the multi-objective formulation should comprise at least two functions: block fuel and operating economics. In all instances, it was advised that the objective function of block fuel should be tempered by an equality constraint of ESAR parity with the baseline projected aircraft using gas-turbine only technology.

Originality/value

A complete, unified analytical description of DESPPS that is universally applicable to any type of energy carrier has been derived and verified for battery-based dual-energy systems. Correspondingly, a set of aircraft design axioms and sizing heuristics relevant to battery-based DESPPS have been presented.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 17 May 2023

Onur Yasar, Selcuk Ekici, Enver Yalcin and Tahir Hikmet Karakoç

Lithium-polymer batteries have common usage in aviation industry especially unmanned aerial vehicles (UAV). Overheating is a serious problem in lithium-polymer batteries. Various…

Abstract

Purpose

Lithium-polymer batteries have common usage in aviation industry especially unmanned aerial vehicles (UAV). Overheating is a serious problem in lithium-polymer batteries. Various cooling methods are performed to keep lithium-polymer batteries in the desired temperature range. The purpose of this paper is to examine pouch type lithium-polymer battery with plate fins by using particle image velocimetry (PIV) and computational fluid dynamics (CFD) for UAV.

Design/methodology/approach

Battery models were produced with a 3D printer. The upper surfaces of fabricated battery models were covered with plate fins with different fin heights and fin thicknesses. Velocities were obtained with PIV and CFD. Temperature dissipations were acquired with numerical simulations.

Findings

At the end of the study, the second battery model gave the lowest temperature values among the battery models. Temperature values of the seventh battery model were the highest temperatures. Fin cooling reduced the maximum cell temperatures noticeably. Numerical simulations agreed with PIV measurements well.

Practical implications

This paper takes into account two essential tools such as PIV and CFD, for fluid mechanics, which are significant in the aviation industry and engineering life.

Originality/value

The originality of this paper depends on investigation of both PIV and CFD for UAV and developing a cooling method that can be feasible for landing and take-off phases for UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 September 2021

Deepak Kumar and Tavishi Tewary

Earlier most of the research groups have designed and developed hybrid renewable energy system models with technological, scientific and industrial advancement for the energy…

Abstract

Purpose

Earlier most of the research groups have designed and developed hybrid renewable energy system models with technological, scientific and industrial advancement for the energy systems, but slight attention has been paid towards the grid-connected sustainable urban residential energy systems (SUReS) for metropolitan cities. The current research wishes to design, model and analyze grid-connected energy system for residential applications for sustainable urban residential energy system. The works aims to explore the potential of the augmented energy system for grid-connected energy system.

Design/methodology/approach

The proposed grid-connected SUReS are validated for a sample location at New Delhi (India) with a hybrid optimization model for electric renewable (HOMER) software to define and understand the various load profile. It presents the sensitivity analysis approach to validate the design of the proposed energy system.

Findings

The obtained results reports the key barriers, proposed model and scenarios for sustainable urban energy system development.

Research limitations/implications

Similar approaches can be replicated to design and develop an independent, self-sustainable cleaner and environmental-friendly energy system in the future scenario for the extension of complex grid infrastructures.

Practical implications

It will assist the stakeholder in solving the complex urban sustainability issues raised due to the shortage of energy.

Social implications

It will offer a clean and environment friendly sustainable energy resources with reduced carbon emissions. It will benefit sustainable energy resources with a mix of challenges and opportunities, to suggest an approach for implementation of efficient energy policies to optimize the existing and forthcoming energy systems.

Originality/value

The current research offers a design and model to analyze grid-connected energy system sustainable urban residential applications. It explores the potential of the augmented energy system. The proposed model are validated for a sample location with HOMER simulation software to define and understand various scenarios of the multiple load profile. The work presents the sensitivity analysis approach to validate the proposed energy system.

Expert briefing
Publication date: 13 November 2020

Maritime transport and aviation accounted for just over 900 million tons of carbon dioxide a year in 2019 each, together making up about 5% of global greenhouse gas (GHG…

Details

DOI: 10.1108/OXAN-DB257537

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 18 December 2019

Teresa Donateo, Antonio Ficarella and Claudia Lucia De Pascalis

The purpose of this study is to investigate the optimization of design and energy management in a parallel hybrid-electric powertrain to replace the conventional engine of an…

Abstract

Purpose

The purpose of this study is to investigate the optimization of design and energy management in a parallel hybrid-electric powertrain to replace the conventional engine of an existing tactical unmanned aerial vehicle (UAV) equipped with a Wankel engine with a pre-defined flight mission. The proposed powertrain can work in four different operating modes: electric, thermal, power-assist and charging.

Design/methodology/approach

The power request at propeller axis of each flight segment is used as input for an in-house model that calculates the overall fuel consumption throughout the mission (Mfuel) and the maximum payload weight (Wpay) by means of an average-point analysis. These outputs depend on the energy management strategy that is expressed by the power-split ratio between engine and electric phase (Uphase) of each mission phase, according to which the components of the hybrid system are sized. The in-house model is integrated into an optimization framework to find the optimal set of Uphase and battery size that minimizes Mfuel and maximizes Wpay.

Findings

It was found a 3.24% saving of the fuel mass burned throughout the mission (or, alternative an improvement of endurance by 4.3%) with about the same maximum-payload mass (+0.2%) of the original configuration, or a smaller fuel saving with +11% more payload. The fuel saving of 3.24% corresponds to −3.25% in total emissions of CO2 and a 2.34% reduction of the cost-per-mission.

Practical implications

This study demonstrates that environmental advantages, even if limited, can be already obtained from optimal design and management of the hybrid power system with today technologies while waiting for further benefits from the introduction of advanced technologies for batteries and electric machines.

Originality/value

The main novelties are the design of the powertrain on the basis of the energy management and the application of scalability and hybridization to Wankel engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 11