Search results

1 – 4 of 4
Article
Publication date: 24 May 2023

Wanyi Chen and Fanli Meng

Corporate digital transformation (CDT) has challenged traditional tax administration systems. This study examines the impact of CDT on tax avoidance behavior and tests whether tax…

Abstract

Purpose

Corporate digital transformation (CDT) has challenged traditional tax administration systems. This study examines the impact of CDT on tax avoidance behavior and tests whether tax authorities can identify this behavior.

Design/methodology/approach

Using data on listed companies on the Shanghai and Shenzhen Stock Exchanges from 2008 to 2020, this study applies the Heckman two-stage and cross-section models.

Findings

The results show that the higher the degree of CDT, the more aggressive the tax avoidance behavior. The CDT's impact on corporate tax avoidance is more significant under strong government tax efforts.

Originality/value

This study expands research on the economic consequences of CDT and the factors influencing corporate tax avoidance behavior. Moreover, it has important implications for governments to monitor tax avoidance behavior under the CDT, improve digital tax systems, and pay more attention to the tax administration of digital assets.

Details

International Journal of Managerial Finance, vol. 20 no. 2
Type: Research Article
ISSN: 1743-9132

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 12 January 2024

Jingqi Zhang, Shaohua Jiang and Xiaomin Qi

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the…

Abstract

Purpose

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the management level of fire evacuation site. Make up for the difficulties of BIM technology in effectively connecting building information and fire data.

Design/methodology/approach

First, this paper establishes a fire model and an evacuation model based on BIM information. Then, the safety index (SI) is introduced as a comprehensive index, and the IRI is established by integrating the SI function to evaluate the safety of evacuation routes. Based on these two indices, the IRI-based fire evacuation model is established.

Findings

This study offers an Improved Risk Index (IRI)-based fire evacuation model, which may achieve effective evacuation in fire scenes. And the model is verified by taking the fire evacuation of a shopping center building as an example.

Originality/value

This paper proposes a fire evacuation principle based on IRI, so that the relevant personnel can comprehensively consider the fire factors and evacuation factors to achieve the optimization of building design, thereby improving the fire safety of buildings.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 October 2022

Jianbo Zhu, Qianqian Shi, Ce Zhang, Jingfeng Yuan, Qiming Li and Xiangyu Wang

Promoting low-carbon in the construction industry is important for achieving the overall low-carbon goals. Public–private partnership is very popular in public infrastructure…

Abstract

Purpose

Promoting low-carbon in the construction industry is important for achieving the overall low-carbon goals. Public–private partnership is very popular in public infrastructure projects. However, different perceptions of low-carbon and behaviors of public and private sectors can hinder the realization of low-carbon in these projects. In order to analyze the willingness of each stakeholder to cooperate towards low-carbon goals, an evolutionary game model is constructed.

Design/methodology/approach

An evolutionary game model that considers the opportunistic behavior of the participants is developed. The evolutionary stable strategies (ESSs) under different scenarios are examined, and the factors that influence the willingness to cooperate between the government and private investors are investigated.

Findings

The results illustrate that a well-designed system of profit distribution and subsidies can enhance collaboration. Excessive subsidies have negative impact on cooperation between the two sides, because these two sides can weaken income distribution and lead to the free-riding behavior of the government. Under the situation of two ESSs, there is also an optimal revenue distribution coefficient that maximizes the probability of cooperation. With the introduction of supervision and punishment mechanism, the opportunistic behavior of private investors is effectively constrained.

Originality/value

An evolutionary game model is developed to explore the cooperation between the public sector and the private sector in the field of low-carbon construction. Based on the analysis of the model, this paper summarizes the conditions and strategies that can enable the two sectors to cooperate.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 4 of 4