Search results

1 – 10 of 119
Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 June 2019

C. Rajendran, K. Srinivasan, V. Balasubramanian, H. Balaji and P. Selvaraj

Presently, the materials used in light combat aircraft structures are aluminium alloys and composites. These structures are joined together through riveted joints. The weight of…

Abstract

Purpose

Presently, the materials used in light combat aircraft structures are aluminium alloys and composites. These structures are joined together through riveted joints. The weight of these rivets for the entire aircraft is nearly one ton. In addition to weight, the riveted connection requires a lot of tools, equipments, fixtures and manpower, which makes it an expensive and time-consuming process. Moreover, Al alloy is also welded using tungsten inert gas (TIG) welding process by proper control of process parameters. This process has limitations such as porosity, alloy segregation and hot cracking. To overcome the above limitations, an alternative technology is required. One such technology is friction stir welding (FSW), which can be successfully applied for welding of aluminium alloy in LCA structures. Therefore, this paper aims to compare the load carrying capabilities of FSW joints with TIG welded and riveted joints.

Design/methodology/approach

FSW joints and TIG welded joints were fabricated using optimized process parameters, followed by riveted joints using standard shop floor practice in the butt and lap joint configurations.

Findings

The load-carrying capabilities of FSW joints are superior than those of other joints. FSW joints exhibited 75 per cent higher load-carrying capability compared to the riveted joints and TIG-welded joints.

Practical implications

From this investigation, it is inferred that the FSW joint is suitable for the replacement of riveted joints in LCA and TIG-welded joints.

Originality/value

Friction stir butt joints exhibited 75 per cent higher load-carrying capability than riveted butt joints. Friction stir welded lap joints showed 70 per cent higher load-carrying capability than the riveted lap joints. Friction stir butt joints yielded 41 per cent higher breaking load capabilities than the TIG-welded butt joints. Moreover, Friction stir lap weld joints have 57 per cent more load-carrying capabilities than the TIG-welded lap joints.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 October 2019

Rahul S.G. and Sharmila A.

The purpose of this study is to present a comprehensive review of the fundamental concepts and terminologies pertaining to different types of aluminium metal matrix composites…

Abstract

Purpose

The purpose of this study is to present a comprehensive review of the fundamental concepts and terminologies pertaining to different types of aluminium metal matrix composites, their joining techniques and challenges, friction stir welding (FSW) process, post-welding characterizations and basic control theory of FSW, followed by the discussions on the research reports in these areas.

Design/methodology/approach

Joining of aluminium metal matrix composites (Al-MMC) poses many challenges. These materials have their demanding applications in versatile domains, and hence it is essential to understand their weldability and material characteristics. FSW is a feasible choice for joining of Al-MMC over the fusion welding because of the formation of narrow heat affected zone and minimizing the formation of intermetallic compounds at weld interface. The goal in FSW is to generate enough thermal energy by friction between the workpiece and rotating tool. Heat energy is generated by mechanical interaction because of the difference in velocity between the workpiece and rotating tool. In the present work, a detailed survey is done on the above topics and an organised conceptual context is presented. A complete discussion on significance of FSW process parameters, control schemes, parameter optimization and weld quality monitoring are presented, along with the analysis on relation between the interdependent parameters.

Findings

Results from the study present the research gaps in the FSW studies for joining of the aluminium-based metal matrix composites, and they highlight further scope of studies pertaining to this domain.

Originality/value

It is observed that the survey done on FSW of Al-MMCs and their control theory give an insight into the fundamental concepts pertaining to this research area to enhance interdisciplinary technology exploration.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 March 2024

Taotao Jin, Xiuhui Cui, Chuanyue Qi and Xinyu Yang

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

16

Abstract

Purpose

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

Design/methodology/approach

The friction stir welding robot is designed to complete online repair according to the surface damage of large aluminum alloy trucks. A rotatable telescopic arm unit and a structure for a cutting board in the shape of a petal that was optimized by finite element analysis are designed to give enough top forging force for welding to address the issues of inadequate support and significant deformation in the repair process.

Findings

The experimental results indicate that the welding robot is capable of performing online surface repairs for large aluminum alloy trucks without rigid support on the backside, and the welding joint exhibits satisfactory performance.

Practical implications

Compared with other heavy-duty robotic arms and gantry-type friction stir welding robots, this robot can achieve online welding without disassembling the vehicle body, and it requires less axial force. This lays the foundation for the future promotion of lightweight equipment.

Originality/value

The designed friction stir welding robot is capable of performing online repairs without dismantling the aluminum alloy truck body, even in situations where sufficient upset force is unavailable. It ensures welding quality and exhibits high efficiency. This approach is considered novel in the field of lightweight online welding repairs, both domestically and internationally.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 September 2020

Swathi Balaji, Sujay Aadithya B. and Balachandar K.

Friction stir welding (FSW) and underwater friction stir welding (UWFSW) of aluminium alloy 2024-T351 was carried out, with a chosen set of parameters, namely, rotational speed of…

Abstract

Purpose

Friction stir welding (FSW) and underwater friction stir welding (UWFSW) of aluminium alloy 2024-T351 was carried out, with a chosen set of parameters, namely, rotational speed of 450 rpm, 560 rpm and 710 rpm, welding speed of 25 mm/min, 40 mm/min and 63 mm/min and tool tilt angle of 0º, 1° and 2º. This study aims to understand the correlation between temperatures and weld parameters, finite element simulation was carried out using Abaqus®.

Design/methodology/approach

Comparative analysis of the mechanical properties of the samples welded with FSW and UWFSW was carried out and correlated with that of the microstructures. Microhardness survey was also conducted across the weldments to support the findings.

Findings

Samples welded with higher rotational speed and low traverse speed favoured good quality, defect-free welds with enhanced material flow. Underwater welded samples resulted in improved mechanical properties than that of the samples welded with conventional FSW. Higher cooling rates resulted in finer grains in all UWFSW samples than that of conventional FSW samples, which, in turn, also reflected in the microhardness survey done across the weldments. Among the chosen window of the parameter, samples welded with 710 rpm, 25 mm/min and 2° had shown improvement in mechanical properties.

Research limitations/implications

This work was carried out in a milling machine, which limits the rotational speed which could be used. Optimistically, this limitation also paves way for using the commonly available milling to be used for FSW.

Originality/value

This original research study shall open opportunities to enable FSW and UWFSW to be done on similar/dissimilar joints of varying composition. Additionally, this research study throws enough light on the age – hardenable aluminium alloy being welded in a commonly available milling machine.

Article
Publication date: 12 October 2012

Jeroen De Backer, Anna‐Karin Christiansson, Jens Oqueka and Gunnar Bolmsjö

Friction stir welding (FSW) is a novel method for joining materials without using consumables and without melting the materials. The purpose of this paper is to present the state…

Abstract

Purpose

Friction stir welding (FSW) is a novel method for joining materials without using consumables and without melting the materials. The purpose of this paper is to present the state of the art in robotic FSW and outline important steps for its implementation in industry and specifically the automotive industry.

Design/methodology/approach

This study focuses on the robot deflections during FSW, by relating process forces to the deviations from the programmed robot path and to the strength of the obtained joint. A robot adapted for the FSW process has been used in the experimental study. Two sensor‐based methods are implemented to determine path deviations during test runs and the resulting welds were examined with respect to tensile strength and path deviation.

Findings

It can be concluded that deflections must be compensated for in high strengths alloys. Several strategies can be applied including online sensing or compensation of the deflection in the robot program. The welding process was proven to be insensitive for small deviations and the presented path compensation methods are sufficient to obtain a strong and defect‐free welding joint.

Originality/value

This paper demonstrates the effect of FSW process forces on the robot, which is not found in literature. This is expected to contribute to the use of robots for FSW. The experiments were performed in a demonstrator facility which clearly showed the possibility of applying robotic FSW as a flexible industrial manufacturing process.

Details

Industrial Robot: An International Journal, vol. 39 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 October 2015

M. Grujicic, R Yavari, S. Ramaswami, J Snipes and R Galgalikar

Friction stir welding (FSW) butt-joining involving the use of a dissimilar filler metal insert between the retreating and advancing portions of the workpiece is investigated…

Abstract

Purpose

Friction stir welding (FSW) butt-joining involving the use of a dissimilar filler metal insert between the retreating and advancing portions of the workpiece is investigated computationally using a combined Eulerian-Lagrangian (CEL) finite element analysis (FEA). The emphasis of the computational analysis was placed on the understanding of the inter-material mixing and weld-flaw formation during a dissimilar-material FSW process. The paper aims to discuss these issues.

Design/methodology/approach

The FEA employed is of a two-way thermo-mechanical character (i.e. frictional-sliding/plastic-work dissipation was taken to act as a heat source in the energy conservation equation), while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. Within the analysis, the workpiece and the filler-metal insert are treated as different materials within the Eulerian subdomain, while the tool was treated as a conventional Lagrangian subdomain. The use of the CEL formulation within the workpiece insert helped avoid numerical difficulties associated with excessive Lagrangian element distortion.

Findings

The results obtained revealed that, in order to obtain flaw-free FSW joints with properly mixed filler and base materials, process parameters including the location of the tool relative to the centerline of the weld must be selected judiciously.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to simulate FSW of dissimilar materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 May 2011

T. Ghidini, C. Dalle Donne and U. Alfaro Mercado

Friction stir welding (FSW) is simple, clean and cost effective joining technology which allows high‐quality joining of materials that have been traditionally troublesome to weld

1352

Abstract

Purpose

Friction stir welding (FSW) is simple, clean and cost effective joining technology which allows high‐quality joining of materials that have been traditionally troublesome to weld conventionally without distortion, cracks or voids such as high‐strength aluminium alloys. Since FSW has been identified as “key technology” for primary aerospace structures, the recent FAR regulations for damage tolerance and fatigue evaluations of aircraft structures require fatigue life predictions for this specific joint type also in the presence of corrosion. The purpose of this paper is to give an overview of the prediction of small coupon fatigue lives of thin section friction stir welded butt and T‐joints.

Design/methodology/approach

Particularly, as a special application, widespread fracture mechanics software will be used to predict the fatigue life of FSW joints and to obtain SN curves. The engineering approach will start from an easy definition of the damage affecting the fatigue life of any of the previously mentioned cases (inclusions, tool markings, corrosion pits) and will move through affordable fracture mechanics solutions. Particularly, a first step in predicting the fatigue life of complex friction stir welded structures will be taken by combining the FEM code with the fracture mechanics software in the prediction of the FSW T‐joints.

Findings

The calculations are in very good agreement with the experimental results once the following basic assumptions are done: the welded material is treated as base material; particle inclusions and welding imperfections are treated as initial flaws while predicting the life of polished and un‐polished (including the T‐joints) FSW material, respectively, and the entire fatigue life was comprised of crack propagation; pitting and inter‐granular corrosion are treated as a single corrosion damage source and the model surface crack comprehends this damage; and the several corrosion‐damaged areas of the specimen surface are simulated with a single semi elliptical surface crack having the dimensions of the deepest and the widest corrosion damage area.

Originality/value

A simple engineering approach which is based on a relatively solid background and which is checked against fatigue test data for various FSW test specimens was developed: it may provide a practical and reliable basis for the analysis of fatigue tests of integral structures in the presence of corrosion attack, by using widespread fracture mechanics principles.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 January 2008

Paul Fleming, David Lammlein, D. Wilkes, Katherine Fleming, Thomas Bloodworth, George Cook, Al Strauss, David DeLapp, Thomas Lienert, Matthew Bement and Tracie Prater

This paper aims to investigate methods of implementing in‐process fault avoidance in robotic friction stir welding (FSW).

Abstract

Purpose

This paper aims to investigate methods of implementing in‐process fault avoidance in robotic friction stir welding (FSW).

Design/methodology/approach

Investigations into the possibilities for automatically detecting gap‐faults in a friction stir lap weld were conducted. Force signals were collected from a number of lap welds containing differing degrees of gap faults. Statistical analysis was carried out to determine whether these signals could be used to develop an automatic fault detector/classifier.

Findings

The results demonstrate that the frequency spectra of collected force signals can be mapped to a lower dimension through discovered discriminant functions where the faulty welds and control welds are linearly separable. This implies that a robust and precise classifier is very plausible, given force signals.

Research limitations/implications

Future research should focus on a complete controller using the information reported in this paper. This should allow for a robotic friction stir welder to detect and avoid faults in real time. This would improve manufacturing safety and yield.

Practical implications

This paper is applicable to the rapidly expanding robotic FSW industry. A great advantage of heavy machine tool versus robotic FSW is that the robot cannot supply the same amount of rigidity. Future work must strive to overcome this lack of mechanical rigidity with intelligent control, as has been examined in this paper.

Originality/value

This paper investigates fault detection in robotic FSW. Fault detection and avoidance are essential for the increased robustness of robotic FSW. The paper's results describe very promising directions for such implementation.

Details

Sensor Review, vol. 28 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 31 May 2011

J.D. Costa, J.A.M. Ferreira and L.P. Borrego

Welded components are often subjected to variable amplitude service loads, increasing the uncertainty of fatigue life due to material strength, notch geometries, defect content…

Abstract

Purpose

Welded components are often subjected to variable amplitude service loads, increasing the uncertainty of fatigue life due to material strength, notch geometries, defect content and residual stresses. In the case of friction stir welding (FSW) of aluminium alloys no data were found available concerning fatigue behaviour under variable amplitude loading. The purpose of this paper is to determine the fatigue strength of friction stir welds in AA6082‐T6 under constant and variable amplitude loading and analyse the validity of Miner's rule for these specific welding conditions.

Design/methodology/approach

Fatigue tests were carried out in a servo‐hydraulic testing machine using a stress ratio of R=0. Typified Gassner amplitude spectra were considered, using four shape exponent values. Microhardness tests were performed to characterize the Vickers hardness profile in the vicinity of the weld area. Relatively to the base material (BM), the FSW process leads to a decrease of the static mechanical properties.

Findings

Detailed examination revealed a hardness decrease in the thermo‐mechanically affected zone and the nugget zone average hardness was found to be lower than the base alloy hardness. The comparison with data collected from the literature shows that FSW specimens present higher fatigue resistance than specimens welded by metal inert gas and tungsten inert gas processes. However, they still have lower fatigue lives than the BM. Using the equivalent stress calculated by Miner's rule, a good agreement was observed between constant and variable fatigue loading results. The characteristic curve obtained for friction stir welds is higher than the International Institute of Welding (IIW) fatigue class for fusion welds with full‐penetration both‐sided butt joints.

Originality/value

No data are available concerning fatigue behaviour under variable amplitude loading for friction stir welds of aluminium alloys. Furthermore, this paper analyses the fatigue strength of friction stir welds in AA6082‐T6 under constant and variable amplitude loading in order to verify the validity of Miner's rule for this specific welding process. A comparison between characteristic fatigue curves, using IIW fatigue classes (FAT), is also performed.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 119