Search results

1 – 10 of 346
Open Access
Article
Publication date: 2 August 2019

Yazhou Mao, Yang Jianxi, Xu Wenjing and Liu Yonggang

The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors…

Abstract

Purpose

The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors of journal bearing with different arrangement patterns under lubrication condition were studied based on M-2000 friction and wear tester.

Design/methodology/approach

The friction and wear of journal bearing contact surface were simulated by ANSYS. The wear mechanism of bearing contact surfaces was investigated by the means of energy dispersive spectrum analysis on the surface morphology and friction and wear status of the journal bearing specimens by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Besides, the wearing capacity of the textured bearing was predicted by using the GM (1,1) and Grey–Markov model.

Findings

As the loads increase, the friction coefficient of journal bearing specimens decrease first and then increase slowly. The higher rotation speed, the lower friction coefficient and the faster temperature build-up. The main friction method of the bearing sample is three-body friction. The existence of texture can effectively reduce friction and wear. In many arrangement patterns, the best is 4# bearing with round pits cross-arrangement pattern. Its texturing diameters are 60 µm and 125 µm, and the spacing and depth are 200 µm and 25 µm, respectively. In addition, the Grey–Markov model prediction result is more accurate and fit the experimental value better.

Originality/value

The friction and wear mechanism is helpful for scientific research and engineers to understand the tribological behaviors and engineering applications of textured bearing. The wear capacity of textured bearing is predicted by using the Grey–Markov model, which provides technical help and theoretical guidance for the service life and reliability of textured bearing.

Open Access
Article
Publication date: 24 October 2022

Babak Lotfi and Bengt Ake Sunden

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice…

1159

Abstract

Purpose

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice structure topology (simple cubic, body-centered cubic, z-reinforced body-centered cubic [BCCZ], face-centered cubic and z-reinforced face-centered cubic [FCCZ] lattice structures) and porosity value ( ) – on the thermal-hydraulic characteristics of the novel trussed fin-and-elliptical tube heat exchanger (FETHX), which has led to a deeper understanding of the superior heat transfer enhancement ability of the PCL structure.

Design/methodology/approach

A three-dimensional computational fluid dynamics (CFD) model is proposed in this paper to provide better understanding of the fluid flow and heat transfer behavior of the PCL structures in the trussed FETHXs associated with different structure topologies and high-porosities. The flow governing equations of the trussed FETHX are solved by the CFD software ANSYS CFX® and use the Menter SST turbulence model to accurately predict flow characteristics in the fluid flow region.

Findings

The thermal-hydraulic performance benchmarks analysis – such as field synergy performance and performance evaluation criteria – conducted during this research successfully identified demonstrates that if the high porosity of all PCL structures decrease to 92%, the best thermal-hydraulic performance is provided. Overall, according to the obtained outcomes, the trussed FETHX with the advantages of using BCCZ lattice structure at 92% porosity presents good thermal-hydraulic performance enhancement among all the investigated PCL structures.

Originality/value

To the best of the authors’ knowledge, this paper is one of the first in the literature that provides thorough thermal-hydraulic characteristics of a novel trussed FETHX with high-porosity PCL structures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 15 November 2022

Liyao Song, Bai Chen, Bo Li, Rupeng Zhu and Dan Wang

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there…

Abstract

Purpose

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there exists excessive vibration when the shaft passes through the critical frequency. Dry friction damper is the equipment applied to the drive shaft to suppress the excessive vibration. In order to figure out the damping mechanism of the dry friction damper and improve the damping efficiency, the dynamic model of the shaft/damper system is established based on the Jeffcott rotor model.

Design/methodology/approach

The typical frequency response of the system is studied through bifurcation diagrams, amplitude-frequency characteristic curves and waterfall frequency response spectrum. The typical transient responses under frequency sweeps are also obtained.

Findings

The results show that the response of the system changes from periodic no-rub motion to quasi-periodic rub-impact motion, and then to synchronous full annular rub-impact, and finally, back to periodic no-rub motion. The slip of the rub-impact ring improves the stability of the system. Besides, the effects of the system parameters including critical dry friction force, rub-impact friction coefficient, initial clearance on the stability and the vibration damping capacity are studied. It is observed that the stability changes significantly varying the three parameters respectively. The vibration damping capacity is mainly affected by the critical dry friction force and the initial clearance.

Originality/value

Presented results provide guidance for the design of the dry friction damper.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 28 February 2023

Andrea Sabatini, Federica Pascucci and Gian Luca Gregori

This paper aims to explore how customer involvement unfolds in the development of a smart product. Smart product development poses new challenges to firms. In particular, the…

1907

Abstract

Purpose

This paper aims to explore how customer involvement unfolds in the development of a smart product. Smart product development poses new challenges to firms. In particular, the buyers’ and users’ involvement has shown novel dynamics in smart product development. These peculiarities are linked with the specific characteristics of the digital technology embedded into the smart products. This study’s rationale is to analyse the frictions arising from potential divergent objectives between the focal firm and its customers when digital technologies are embedded in traditional products.

Design/methodology/approach

This study adopted an explorative and qualitative approach to investigate new emerging dynamics of customer involvement during technological development. A coffee machine producer is selected as a case study to uncover new insights and a novel perspective on the phenomenon of customer involvement in smart product development. Data analysis followed an abductive approach that allowed to identify the dimensions of friction emerging during the technological development process.

Findings

The case study analysis depicts that smart product development presents novel customer involvement dynamics. In particular, this study abductively identifies dimensions of friction emerging between the focal firm and buyers/users. Friction arises in the technological interface between the actors involved. These dimensions of friction address the complexities of developing technology in terms of smart products with customer involvement. This study suggests that embedding of technology into an existing product might change how customers are involved.

Originality/value

Even though customer involvement in product innovation has been extensively studied in management literature, this paper focused on a new type of innovation, smart products. To the best of the authors’ knowledge, no previous studies have yet empirically explored customers’ involvement while embedding digital technologies into existing products to create smart products. In particular, this study sheds light on the dimensions of friction emerging between the focal firm and the actors of the business network. This study unfolds novel contributions to the Industrial Marketing and Purchasing literature on technological development.

Details

Journal of Business & Industrial Marketing, vol. 38 no. 6
Type: Research Article
ISSN: 0885-8624

Keywords

Open Access
Article
Publication date: 23 June 2023

Ferdinand Schmid, Constantin Paschold, Thomas Lohner and Karsten Stahl

Internal gearings are commonly used in transmissions due to their advantages like high-power density. To ensure high efficiency, load-carrying capacity and good noise behavior, a…

Abstract

Purpose

Internal gearings are commonly used in transmissions due to their advantages like high-power density. To ensure high efficiency, load-carrying capacity and good noise behavior, a profound knowledge of the local gear mesh is essential. The tooth contact of internal gears relates to a convex and concave surface that form a conformal contact. This is in contrast to external gears, where two convex surfaces form a contraformal contact. This paper aims at a better understanding of conformal contacts under elastohydrodynamic lubrication (EHL) to improve the design of internal gearings.

Design/methodology/approach

An existing numerical EHL model is used for studying the characteristic properties of a hard conformal EHL line contact. A hard contraformal EHL line contact is studied as reference. Non-Newtonian fluid behavior and thermal effects are considered. By taking into account the local contact conformity and kinematics, the effects and relevance of the curvature of the lubricant gap and micro-slip are analyzed. In a parameter study, scale effects of the contact radii on film thickness, temperature rise and friction are examined.

Findings

The curvature of the lubricant gap and effects of micro-slip are small in hard conformal EHL line contacts. For high micro-slip, it can be neglected. Hence, the modeling of conformal contacts using an equivalent geometry of the contact problem is reasonable. The parameter study shows beneficial tribological aspects of the conformal contact compared to the contraformal contact. Higher film thickness and lower fluid coefficient of friction are observed for conformal contacts, which can be attributed to lower pressures for the case of the same external normal force, or to a higher contact temperature rise for the case of equivalent contact pressure.

Originality/value

Despite its widespread existence, the local geometry and kinematics in hard conformal EHL line contacts like in internal gearings have been rarely studied. The findings help for a better understanding of local contact characteristics and its relevance. The quantified scale effects help to improve the efficiency and load-carrying capacity of machine elements with hard conformal EHL contacts, like internal gearings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0366/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 21 June 2023

Pu Wang, Shuguo Wang, Jing Ge, Daolin Si and Dongsheng Yang

It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process. The wear will cause the change of railhead…

Abstract

Purpose

It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process. The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail, which will directly affect the wheel–rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation. The purpose of this paper is to provide suggestions for wear management of high-speed turnout.

Design/methodology/approach

The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site; the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.

Findings

The results show that: the major factor for the service life of a curved switch rail is the lateral wear. The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout. To be specific, the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout, but in the wider section at its rear end when for a facing turnout. The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm, which does not reach the specified limit of 6 mm. For comparison, the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm, which exceeds the specified limit. Based on this, in addition to meeting the requirements of maintenance rules, the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.6° will not contact the switch rail when the wheel is lifted by 2 mm. Accordingly, the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm (as specified) to 3.5 mm.

Originality/value

The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 19 March 2021

Dandan Qiu, Lei Luo, Zhiqi Zhao, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement…

1083

Abstract

Purpose

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel.

Design/methodology/approach

Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics.

Findings

It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study.

Originality/value

The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 14 March 2022

Jamiu Adetayo Dauda, Suraj A. Rahmon, Ibrahim A. Tijani, Fouad Mohammad and Wakeel O. Okegbenro

The purpose of this study is to find the optimum design of Reinforced Concrete (RC) pile foundation to enable efficient use of structural concrete with greater consequences for…

1659

Abstract

Purpose

The purpose of this study is to find the optimum design of Reinforced Concrete (RC) pile foundation to enable efficient use of structural concrete with greater consequences for global environment and economy.

Design/methodology/approach

A non-linear optimisation technique based on the Generalised Reduced Gradient (GRG) algorithm was implemented to find the minimum cost of RC pile foundation in frictional soil. This was achieved by obtaining the optimum pile satisfying the serviceability and ultimate limit state requirements of BS 8004 and EC 7. The formulated structural optimisation procedure was applied to a case study project to assess the efficiency of the proposed design formulation.

Findings

The results prove that the GRG method in Excel solver is an active, fast, accurate and efficient computer programme to obtain optimum pile design. The application of the optimisation for the case study project shows up to 26% cost reduction compared to the conventional design.

Research limitations/implications

The design and formulation of design constraints will be limited to provisions of BS 8004 and EC 7.

Practical implications

Since the minimum quantity of concrete was attained through optimisation, then minimum cement will be used and thus result in minimum CO2 emission. Therefore, the optimum design of concrete structures is a vital solution to limit the damage to the Earth's climate and the physical environment resulting from high carbon emissions.

Originality/value

The current study considers the incorporation of different soil ground parameters in the optimisation process rather than assuming any pile capacity value for the optimisation process.

Details

Frontiers in Engineering and Built Environment, vol. 2 no. 3
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 10 November 2023

Chongyi Chang, Gang Guo, Wen He and Zhendong Liu

The objective of this study is to investigate the impact of longitudinal forces on extreme-long heavy-haul trains, providing new insights and methods for their design and…

Abstract

Purpose

The objective of this study is to investigate the impact of longitudinal forces on extreme-long heavy-haul trains, providing new insights and methods for their design and operation, thereby enhancing safety, operational efficiency and track system design.

Design/methodology/approach

A longitudinal dynamics simulation model of the super long heavy haul train was established and verified by the braking test data of 30,000 t heavy-haul combination train on the long and steep down grade of Daqing Line. The simulation model was used to analyze the influence of factors on the longitudinal force of super long heavy haul train.

Findings

Under normal conditions, the formation length of extreme-long heavy-haul combined train has a small effect on the maximum longitudinal coupler force under full service braking and emergency braking on the straight line. The slope difference of the long and steep down grade has a great impact on the maximum longitudinal coupler force of the extreme-long heavy-haul trains. Under the condition that the longitudinal force does not exceed the safety limit of 2,250 kN under full service braking at the speed of 60 km/h the maximum allowable slope difference of long and steep down grade for 40,000 t super long heavy-haul combined trains is 13‰, and that of 100,000 t is only 5‰.

Originality/value

The results will provide important theoretical basis and practical guidance for further improving the transportation efficiency and safety of extreme-long heavy-haul trains.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 4 August 2022

Aleksandra Hauke-Lopes, Milena Ratajczak-Mrozek and Marcin Wieczerzycki

The purpose of this paper is to investigate how digital transformation changes highly traditional business processes and how it impacts value co-creation and co-destruction. More…

3130

Abstract

Purpose

The purpose of this paper is to investigate how digital transformation changes highly traditional business processes and how it impacts value co-creation and co-destruction. More specifically, the aim is to examine, using the resource interaction approach, how the friction between non-digital and digital resources affects the co-creation and co-destruction of value in a network during digital transformation. Based on this, the authors provide managerial implications on how to handle simultaneous digital and traditional business processes to co-create value during digital transformation.

Design/methodology/approach

A case study is conducted of a digital platform provider and of three traditional confectioneries. In this analysis, the authors looked at the business processes of highly traditional confectioneries that have introduced online services through a digital platform and are undergoing digital transformation.

Findings

In some industries, it is neither possible nor advisable to fully digitalise all business processes, and companies have to partially retain their traditional, analogue character to create value. The process of value co-creation during digital transformation is affected by friction between the digital and non-digital resources and is mitigated by specific lubricants (e.g. mutual reliance, smooth personal communication, willingness to help, attitude towards change). This results in the improvement of processes and capabilities in terms of digital development and traditional production. Friction may also lead to value co-destruction, for example, as the result of transformation from face-to-face to digital interactions.

Originality/value

The authors contribute to research on the digital transformation of highly traditional companies that need to introduce new, digital technologies and resources while continuing their traditional processes. The authors develop the concept of lubricants that mitigate the friction between resources and, therefore, facilitate value co-creation in a business network. Additionally, the authors provide managerial implications for how to handle simultaneous digital and traditional business processes during digital transformation.

Details

Journal of Business & Industrial Marketing, vol. 38 no. 6
Type: Research Article
ISSN: 0885-8624

Keywords

1 – 10 of 346