Search results

1 – 10 of 482
Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

36

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2023

Muthuram N. and Saravanan S.

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Abstract

Purpose

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Design/methodology/approach

In this work, through experiments and numerical simulations, an attempt has been made to increase the fundamental natural frequency of the PCB assembly as high as practically achievable so as to minimize the impacts of dynamic loads acting on it. An optimization tool in the finite element software (ANSYS) was used to search the specified design space for the optimal support location of the six fastening screws.

Findings

It is observed that by changing the support locations based on the optimization results the fundamental natural frequency can be raised up to 51.1% and the same is validated experimentally.

Research limitations/implications

Manufacturers of PCBs used in computers fix the support locations based on symmetric feature of the board not on the dynamic behavior of the assembly. This work might lead manufacturers to redesign the location of other surface mount components.

Practical implications

This work provides guidelines for PCB manufacturers to finalize their support locating points which will improve the dynamic characteristics of the PCB assembly during its functioning.

Originality/value

This study provides a novel method to improve the life of PCB based on support locations optimization which includes majority of the surface mount components that contributes to the total mass the PCB assembly.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 11 December 2023

Eoin Whelan and Ofir Turel

Prior research has extensively examined how bringing technology from work into the non-work life domain creates conflict, yet the reverse pathway has rarely been studied. The…

2842

Abstract

Purpose

Prior research has extensively examined how bringing technology from work into the non-work life domain creates conflict, yet the reverse pathway has rarely been studied. The purpose of this study is to bridge this gap and examine how the non-work use of smartphones in the workplace affects work–life conflict.

Design/methodology/approach

Drawing from three literature streams: technostress, work–life conflict and role boundary theory, the authors theorise on how limiting employees' ability to integrate the personal life domain into work, by means of technology use policy, contributes to stress and work–life conflict. To test this model, the authors employ a natural experiment in a company that changed its policy from fully restricting to open smartphone access for non-work purposes in the workplace. The insights gained from the experiment were explored further through qualitative interviews.

Findings

Work–life conflict declines when a ban on using smartphones for non-work purposes in the workplace is revoked. This study's results show that the relationship between smartphone use in the workplace and work–life conflict is mediated by sensed stress. Additionally, a post-hoc analysis reveals that work performance was unchanged when the smartphone ban was revoked.

Originality/value

First, this study advances the authors' understanding of how smartphone use policies in the workplace spill over to affect non-work life. Second, this work contributes to the technostress literature by revealing how, in specific situations, engagement with ICT can reduce distress and strain.

Details

Internet Research, vol. 34 no. 7
Type: Research Article
ISSN: 1066-2243

Keywords

Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

52

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 March 2024

Shuowen Yan, Pu Xue, Long Liu and M.S. Zahran

This study aims to investigate the design and optimization of landing gear buffers to improve the landing-phase comfort of civil aircraft.

Abstract

Purpose

This study aims to investigate the design and optimization of landing gear buffers to improve the landing-phase comfort of civil aircraft.

Design/methodology/approach

The vibration comfort during the landing and taxiing phases is calculated and evaluated based on the flight-testing data for a type of civil aircraft. The calculation and evaluation are under the guidance of the vibration comfort standard of GB/T13441.1-2007 and related files. The authors establish here a rigid-flexible coupled multibody dynamics finite element model of one full-size aircraft. Furthermore, the authors also implement a dynamic simulation for the landing and taxiing processes. Also, an analysis of how the main parameters of the buffers affect the vibration comfort is presented. Finally, the optimization of the single-chamber and double-chamber buffers in the landing gear is performed considering vibration comfort.

Findings

The double-chamber buffer with optimized parameters in landing gear can improve the vibration comfort of the aircraft during the landing and taxiing phases. Moreover, the comfort index can be increased by 25.6% more than that of a single-chamber type.

Originality/value

To the best of the authors’ knowledge, this study first investigates the evaluation methods and evaluation indexes on the aircraft vibration comfort, then further conducts the optimization of the parameters of landing gear buffer with different structures, so as to improve the comfort of aircraft passengers during landing process. Most of the current studies on aircraft landing gear have focused on the strength and safety of the landing gear, with very limited research on cabin vibration comfort during landing and subsequent taxiing because of the coupling of runway surface unevenness and airframe vibration.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 November 2023

Malika Neifar, Amira Ghorbel and Kawthar Bouaziz

This study attempts to come in help for Morocco by investigating rigorously the linkage between environmental degradation, measured by ecological footprint (EF), and the gross…

Abstract

Purpose

This study attempts to come in help for Morocco by investigating rigorously the linkage between environmental degradation, measured by ecological footprint (EF), and the gross domestic product growth (EG), the human capital (HC) index and the natural resources (NR) depletion over the period of 1980:Q1 to 2021:Q1. The paper examines the validity of environmental Kuznets curve (EKC) hypothesis in the Moroccan context.

Design/methodology/approach

Unlike previous studies, which are based only on the autoregressif dynamic linear (ARDL) model, this paper investigates two recent models: the novel DYNARDL simulation approach and the Kernel-based regularized least squares (KRLS) technics and uses in addition the frequency domain causality (FDC) test.

Findings

Models output say a significant and negative association between HC and the EF and a significant and positive interplay between economic growth and environmental quality in the long term. In the short term, findings reveal a significant and negative association between NR and the EF. Based on the FDC test, results conclude about a unidirectional causality from NR to the EF in short-, medium-, and long-term. Moreover, results validate the EKC hypothesis for the Moroccan environment sustainability.

Originality/value

In this study, the researchers use the “ecological footprint” as dependent variable to obtain more accurate and comprehensive assessment of environmental deterioration. Based on time series data investigations, this study is the first paper, which validates the EKC hypothesis and develops important policy implications for Morocco context to achieve sustainable development targets.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 July 2023

Brahim Gaies and Najeh Chaâbane

This study adopts a new macro-perspective to explore the complex and dynamic links between financial instability and the Euro-American green equity market. Its primary focus and…

Abstract

Purpose

This study adopts a new macro-perspective to explore the complex and dynamic links between financial instability and the Euro-American green equity market. Its primary focus and novelty is to shed light on the non-linear and asymmetric characteristics of dependence, causality, and contagion within various time and frequency domains. Specifically, the authors scrutinize how financial instability in the U.S. and EU interacts with their respective green stock markets, while also examining the cross-impact on each other's green equity markets. The analysis is carried out over short-, medium- and long-term horizons and under different market conditions, ranging from bearish and normal to bullish.

Design/methodology/approach

This study breaks new ground by employing a model-free and non-parametric approach to examine the relationship between the instability of the global financial system and the green equity market performance in the U.S. and EU. This study's methodology offers new insights into the time- and frequency-varying relationship, using wavelet coherence supplemented with quantile causality and quantile-on-quantile regression analyses. This advanced approach unveils non-linear and asymmetric causal links and characterizes their signs, effectively distinguishing between bearish, normal, and bullish market conditions, as well as short-, medium- and long-term horizons.

Findings

This study's findings reveal that financial instability has a strong negative impact on the green stock market over the medium to long term, in bullish market conditions and in times of economic and extra-economic turbulence. This implies that green stocks cannot be an effective hedge against systemic financial risk during periods of turbulence and euphoria. Moreover, the authors demonstrate that U.S. financial instability not only affects the U.S. green equity market, but also has significant spillover effects on the EU market and vice versa, indicating the existence of a Euro-American contagion mechanism. Interestingly, this study's results also reveal a positive correlation between financial instability and green equity market performance under normal market conditions, suggesting a possible feedback loop effect.

Originality/value

This study represents pioneering work in exploring the non-linear and asymmetric connections between financial instability and the Euro-American stock markets. Notably, it discerns how these interactions vary over the short, medium, and long term and under different market conditions, including bearish, normal, and bullish states. Understanding these characteristics is instrumental in shaping effective policies to achieve the Sustainable Development Goals (SDGs), including access to clean, affordable energy (SDG 7), and to preserve the stability of the international financial system.

Details

Journal of Economic Studies, vol. 51 no. 3
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 29 November 2023

Emine Sendurur and Sonja Gabriel

This study aims to discover how domain familiarity and language affect the cognitive load and the strategies applied for the evaluation of search engine results pages (SERP).

Abstract

Purpose

This study aims to discover how domain familiarity and language affect the cognitive load and the strategies applied for the evaluation of search engine results pages (SERP).

Design/methodology/approach

This study used an experimental research design. The pattern of the experiment was based upon repeated measures design. Each student was given four SERPs varying in two dimensions: language and content. The criteria of students to decide on the three best links within the SERP, the reasoning behind their selection, and their perceived cognitive load of the given task were the repeated measures collected from each participant.

Findings

The evaluation criteria changed according to the language and task type. The cognitive load was reported higher when the content was presented in English or when the content was academic. Regarding the search strategies, a majority of students trusted familiar sources or relied on keywords they found in the short description of the links. A qualitative analysis showed that students can be grouped into different types according to the reasons they stated for their choices. Source seeker, keyword seeker and specific information seeker were the most common types observed.

Originality/value

This study has an international scope with regard to data collection. Moreover, the tasks and findings contribute to the literature on information literacy.

Details

The Electronic Library , vol. 42 no. 2
Type: Research Article
ISSN: 0264-0473

Keywords

1 – 10 of 482