Search results

1 – 10 of over 1000
Article
Publication date: 10 January 2024

Tingwei Gu, Shengjun Yuan, Lin Gu, Xiaodong Sun, Yanping Zeng and Lu Wang

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic…

Abstract

Purpose

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic errors when measuring dynamic signals.

Design/methodology/approach

The dynamic characteristics of the force sensor are analyzed by modal analysis and negative step dynamic force calibration test, and the dynamic mathematical model of the force sensor is identified based on a generalized least squares method with a special whitening filter. Then, a compensation unit is constructed to compensate the dynamic characteristics of the force measurement system, and the compensation effect is verified based on the step and knock excitation signals.

Findings

The dynamic characteristics of the force sensor obtained by modal analysis and dynamic calibration test are consistent, and the time and frequency domain characteristics of the identified dynamic mathematical model agree well with the actual measurement results. After dynamic compensation, the dynamic characteristics of the force sensor in the frequency domain are obviously improved, and the effective operating frequency band is widened from 500 Hz to 1,560 Hz. In addition, in the time domain, the rise time of the step response signal is reduced from 0.29 ms to 0.17 ms, and the overshoot decreases from 26.6% to 9.8%.

Originality/value

An effective dynamic calibration and compensation method is proposed in this paper, which can be used to improve the dynamic performance of the strain-gauge-type force sensor and reduce the dynamic measurement error of the force measurement system.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 15 March 2024

Anis Jarboui, Emna Mnif, Nahed Zghidi and Zied Akrout

In an era marked by heightened geopolitical uncertainties, such as international conflicts and economic instability, the dynamics of energy markets assume paramount importance…

Abstract

Purpose

In an era marked by heightened geopolitical uncertainties, such as international conflicts and economic instability, the dynamics of energy markets assume paramount importance. Our study delves into this complex backdrop, focusing on the intricate interplay the between traditional and emerging energy sectors.

Design/methodology/approach

This study analyzes the interconnections among green financial assets, renewable energy markets, the geopolitical risk index and cryptocurrency carbon emissions from December 19, 2017 to February 15, 2023. We investigate these relationships using a novel time-frequency connectedness approach and machine learning methodology.

Findings

Our findings reveal that green energy stocks, except the PBW, exhibit the highest net transmission of volatility, followed by COAL. In contrast, CARBON emerges as the primary net recipient of volatility, followed by fuel energy assets. The frequency decomposition results also indicate that the long-term components serve as the primary source of directional volatility spillover, suggesting that volatility transmission among green stocks and energy assets tends to occur over a more extended period. The SHapley additive exPlanations (SHAP) results show that the green and fuel energy markets are negatively connected with geopolitical risks (GPRs). The results obtained through the SHAP analysis confirm the novel time-varying parameter vector autoregressive (TVP-VAR) frequency connectedness findings. The CARBON and PBW markets consistently experience spillover shocks from other markets in short and long-term horizons. The role of crude oil as a receiver or transmitter of shocks varies over time.

Originality/value

Green financial assets and clean energy play significant roles in the financial markets and reduce geopolitical risk. Our study employs a time-frequency connectedness approach to assess the interconnections among four markets' families: fuel, renewable energy, green stocks and carbon markets. We utilize the novel TVP-VAR approach, which allows for flexibility and enables us to measure net pairwise connectedness in both short and long-term horizons.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 11 January 2024

Vahid Lotfi and Hesamedin Abdorazaghi

The response of the Pine Flat dam–water–foundation rock system is studied by a new described approach (i.e. FE-(FE-TE)-FE). The initial part of study is focused on the time…

Abstract

Purpose

The response of the Pine Flat dam–water–foundation rock system is studied by a new described approach (i.e. FE-(FE-TE)-FE). The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by the FE-(FE-HE)-FE approach (referred to as exact method which employs a rigorous fluid hyper-element). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

Design/methodology/approach

In the present study, dynamic analysis of a typical concrete gravity dam–water–foundation rock system is formulated by the FE-(FE-TE)-FE approach. In this technique, dam and foundation rock are discretized by plane solid finite elements while, water domain near-field region is discretized by plane fluid finite elements. Moreover, the H-W (i.e. Hagstrom–Warburton) high-order condition is imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model.

Findings

High orders of H-W condition, such as O5-5 considered herein, generate highly accurate responses for both possible excitations under both types of full reflective and absorptive reservoir bottom conditions. It is such that transfer functions are hardly distinguishable from corresponding exact responses obtained through the FE-(FE-HE)-FE approach in time harmonic analyses. This is controlled for both low and high normalized reservoir length cases (L/H = 1 and 3). Moreover, it can be claimed that transient analysis leads practically to exact results (in numerical sense) when one is employing high order H-W truncation element. In other words, the results are not sensitive to reservoir normalized length under these circumstances.

Originality/value

Dynamic analysis of concrete gravity dam–water–foundation rock systems is formulated by a new method. The salient aspect of the technique is that it utilizes H-W high-order condition at the truncation boundary. The method is discussed for all types of excitation and reservoir bottom conditions.

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 15 February 2024

Saliq Shamim Shah, Daljeet Singh, Jaswinder Singh Saini and Naveen Garg

This paper aims to study the design and characterization of a 3D printed tetrakaidecahedron cell-based acoustic metamaterial. At present, the mitigation of low-frequency noise…

Abstract

Purpose

This paper aims to study the design and characterization of a 3D printed tetrakaidecahedron cell-based acoustic metamaterial. At present, the mitigation of low-frequency noise involves the utilization of spatially demanding materials for the absorption of sound. These materials lack the ability for targeted frequency control adjustments. Hence, there is a requirement for an approach that can effectively manage low-frequency noise using lightweight and durable materials.

Design/methodology/approach

The CAD model was created in SolidWorks and was manufactured using the Digital Light Processing (DLP) 3D printing technique. Experimental study and numerical simulations examined the metamaterial’s acoustic absorption. An impedance tube with two microphones was used to determine the absorption coefficient of the metamaterial. The simulations were run in a thermoviscous module.

Findings

The testing of acoustic samples highlighted the effects of geometric parameters on acoustic performance. Increment of the strut length by 0.4 mm led to a shift in response to a lower frequency by 500 Hz. Peak absorption rose from 0.461 to 0.690 as the strut diameter was increased from 0.6 to 1.0 mm. Increasing the number of cells from 8 to 20 increased the absorption coefficient and lowered the response frequency.

Originality/value

DLP 3D printing technique was used to successfully manufacture tetrakaidecahedron-based acoustic metamaterial samples. A novel study on the effects of geometric parameters of tetrakaidecahedron cell-based acoustic metamaterial on the acoustic absorption coefficient was conducted, which seemed to be missing in the literature.

Article
Publication date: 26 January 2024

Opeoluwa Adeniyi Adeosun, Suhaib Anagreh, Mosab I. Tabash and Xuan Vinh Vo

This paper aims to examine the return and volatility transmission among economic policy uncertainty (EPU), geopolitical risk (GPR), their interaction (EPGR) and five tradable…

Abstract

Purpose

This paper aims to examine the return and volatility transmission among economic policy uncertainty (EPU), geopolitical risk (GPR), their interaction (EPGR) and five tradable precious metals: gold, silver, platinum, palladium and rhodium.

Design/methodology/approach

Applying time-varying parameter vector autoregression (TVP-VAR) frequency-based connectedness approach to a data set spanning from January 1997 to February 2023, the study analyzes return and volatility connectedness separately, providing insights into how the data, in return and volatility forms, differ across time and frequency.

Findings

The results of the return connectedness show that gold, palladium and silver are affected more by EPU in the short term, while all precious metals are influenced by GPR in the short term. EPGR exhibits strong contributions to the system due to its elevated levels of policy uncertainty and extreme global risks. Palladium shows the highest reaction to EPGR, while silver shows the lowest. Return spillovers are generally time-varying and spike during critical global events. The volatility connectedness is long-term driven, suggesting that uncertainty and risk factors influence market participants’ long-term expectations. Notable peaks in total connectedness occurred during the Global Financial Crisis and the COVID-19 pandemic, with the latter being the highest.

Originality/value

Using the recently updated news-based uncertainty indicators, the study examines the time and frequency connectedness between key uncertainty measures and precious metals in their returns and volatility forms using the TVP-VAR frequency-based connectedness approach.

Details

Studies in Economics and Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1086-7376

Keywords

Article
Publication date: 21 February 2024

Jerko Ledic Neto, Dalton Francisco Andrade, Hai-Yan Helen Lu, Anna Cecilia Mendonca Amaral Petrassi and Antonio Renato Pereira Moro

This study aimed to develop a psychometrically reliable job satisfaction (JS) measure for university employees, guiding administrative decisions and monitoring satisfaction over…

Abstract

Purpose

This study aimed to develop a psychometrically reliable job satisfaction (JS) measure for university employees, guiding administrative decisions and monitoring satisfaction over time in public universities.

Design/methodology/approach

A JS survey developed by a Brazilian federal university’s sustainability committee containing 58 items across physical, cognitive and organizational domains was longitudinally tested with 1,214 responses collected. The data were analyzed using Item Response Theory (IRT) analysis, employing the Graded Response Model, with tools such as frequency analysis, item characteristic curve, and full-information factor analysis in RStudio. The scale’s criterion validity was also established via expert qualitative interpretation.

Findings

The instrument’s internal consistency was confirmed as the results demonstrated its high reliability with a marginal reliability coefficient of 0.95. Significant findings revealed that recognition and supervisor relationships were key discriminators of JS and that workers began to perceive satisfaction when basic environmental conditions were met.

Research limitations/implications

It is important to mention that the application of this scale is specifically limited to higher education institutions and may not be directly applicable to other educational settings or industry sectors without modifications.

Originality/value

Although numerous measures and scales have been developed to assess JS, one elaborated by using IRT in a public university environment was lacking. Due to shifting dynamics in the workplace, traditional measurement of JS has proven inadequate, necessitating a more precise, accessible and updated tool. The developed scale allows precisely targeted interventions to improve JS and can be reapplied to evaluate their effectiveness. This research thus contributes a valuable tool for academic organizational psychology, enhancing the understanding of the measurement of JS.

Details

International Journal of Public Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3558

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

31

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2023

Muthuram N. and Saravanan S.

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Abstract

Purpose

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Design/methodology/approach

In this work, through experiments and numerical simulations, an attempt has been made to increase the fundamental natural frequency of the PCB assembly as high as practically achievable so as to minimize the impacts of dynamic loads acting on it. An optimization tool in the finite element software (ANSYS) was used to search the specified design space for the optimal support location of the six fastening screws.

Findings

It is observed that by changing the support locations based on the optimization results the fundamental natural frequency can be raised up to 51.1% and the same is validated experimentally.

Research limitations/implications

Manufacturers of PCBs used in computers fix the support locations based on symmetric feature of the board not on the dynamic behavior of the assembly. This work might lead manufacturers to redesign the location of other surface mount components.

Practical implications

This work provides guidelines for PCB manufacturers to finalize their support locating points which will improve the dynamic characteristics of the PCB assembly during its functioning.

Originality/value

This study provides a novel method to improve the life of PCB based on support locations optimization which includes majority of the surface mount components that contributes to the total mass the PCB assembly.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 11 December 2023

Eoin Whelan and Ofir Turel

Prior research has extensively examined how bringing technology from work into the non-work life domain creates conflict, yet the reverse pathway has rarely been studied. The…

2728

Abstract

Purpose

Prior research has extensively examined how bringing technology from work into the non-work life domain creates conflict, yet the reverse pathway has rarely been studied. The purpose of this study is to bridge this gap and examine how the non-work use of smartphones in the workplace affects work–life conflict.

Design/methodology/approach

Drawing from three literature streams: technostress, work–life conflict and role boundary theory, the authors theorise on how limiting employees' ability to integrate the personal life domain into work, by means of technology use policy, contributes to stress and work–life conflict. To test this model, the authors employ a natural experiment in a company that changed its policy from fully restricting to open smartphone access for non-work purposes in the workplace. The insights gained from the experiment were explored further through qualitative interviews.

Findings

Work–life conflict declines when a ban on using smartphones for non-work purposes in the workplace is revoked. This study's results show that the relationship between smartphone use in the workplace and work–life conflict is mediated by sensed stress. Additionally, a post-hoc analysis reveals that work performance was unchanged when the smartphone ban was revoked.

Originality/value

First, this study advances the authors' understanding of how smartphone use policies in the workplace spill over to affect non-work life. Second, this work contributes to the technostress literature by revealing how, in specific situations, engagement with ICT can reduce distress and strain.

Details

Internet Research, vol. 34 no. 7
Type: Research Article
ISSN: 1066-2243

Keywords

1 – 10 of over 1000