Search results

1 – 10 of over 81000
Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 6 December 2022

Pallav Rawal and Sanyog Rawat

In wireless communication system, use of multiple antennas for different requirements of system will increase the system complexity. However, reconfigurable antenna is maximizing…

Abstract

Purpose

In wireless communication system, use of multiple antennas for different requirements of system will increase the system complexity. However, reconfigurable antenna is maximizing the connectivity to cover different wireless services that operate different frequency range. Pattern reconfigurable antenna can improve security, avoid noise and save energy. Due to their compactness and better performance at different applications, reconfigurable antennas are very popular among the researchers. The purpose of this work, is to propose a novel design of S-shaped antenna with frequency and pattern diversity. The pattern and frequency reconfiguration are controlled via ON/OFF states of the PIN diode.

Design/methodology/approach

The geometrical structure of the proposed antenna dimension is 18 × 18 × 0.787 mm3 with εr = 2.2 dielectric constant. Three S-shaped patches are connected to a ring patch through PIN diodes. The approximate circumference of ring patch is 18.84 mm and length of patch is 5 mm, so approximate length of radiating patch is 14.42 mm and effective dielectric constant is 1.93. Conductor backed coplanar waveguide (CPW) is used for feeding. The proposed antenna is designed and simulated on CST microwave studio and fabricated using photolithography process. Measurements have been done in anechoic chamber.

Findings

Antenna shows the dual band operation at 2.1 and 3.4 GHz frequency. The first band remains constant at 2.1 GHz resonant frequency and 200–400 MHz impedance bandwidth. Second band is switched at seven different resonant frequencies as 3.14, 3.45, 3.46, 3.68, 3.69, 3.83 and 3.86 GHz with switching of the diodes. The −10 dB bandwidth is more than 1.4 GHz.

Research limitations/implications

Pattern reconfigurability can be achieved using mechanical movement of antenna easily but it is not a reliable approach for planar antennas. Electronic switching method is used in proposed antenna. Antenna size is very small so fabrication is very crucial task. Measured results are deviated from simulation results due to fabrication error and effect of leads of diodes, connecting wires and battery.

Practical implications

The reconfiguration of the proposed antenna is controlled via ON/OFF states of the three PIN diodes. The lower band of 2.1 GHz is fixed, while second band is switched at five different resonant frequencies as 3.27, 3.41, 3.45, 3.55 and 3.88 GHz, with switching of the PIN diodes with all state of diodes and exhibit pattern reconfigurability at 2.1 GHz frequency. At second band center frequency is significantly changed with state of diodes and at 3.4 GHz pattern is also changed with state of diodes, hence antenna exhibits frequency and pattern reconfigurability.

Originality/value

A novel design of pattern and frequency reconfigurable antenna is proposed. Here, work is divided into two parts: first is frequency reconfiguration and second is radiation pattern reconfiguration. PIN diodes as switch are used to select the frequency band and reconfigure the radiation pattern. This proposed antenna design is novel dual band frequency and pattern reconfigurable antenna. It resonates at two distinct frequencies, i.e. 2.1 and 3.4 GHz, and has a pattern tilt from 0° to 355°. The conductor backed CPW feed technique is used for impedance matching.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 28 September 2010

Mohammad Asaduzzaman Chowdhury

The purpose of this paper is to investigate experimentally the effect of natural frequency of the experimental set‐up on wear rate of glass fiber‐reinforced plastic (GFRP).

265

Abstract

Purpose

The purpose of this paper is to investigate experimentally the effect of natural frequency of the experimental set‐up on wear rate of glass fiber‐reinforced plastic (GFRP).

Design/methodology/approach

Experimental and dimensional analysis. A pin‐on‐disc apparatus having facility of vibrating the test samples at different directions, amplitudes and frequencies was designed and fabricated. The natural frequency of the set‐up was varied by adding dead loads of the set‐up from 0 to 50 kg. At each added load, the wear rate has been measured.

Findings

The presence of natural frequency of vibration indeed affects the wear rate considerably. The values of wear rate increase with the increase of natural frequency of vibration of the experimental set‐up. As the wear rate increases with increasing natural frequency of vibration, therefore, maintaining appropriate level of natural frequency vibration wear may be kept to some lower value to improve mechanical processes. The empirical formula of wear rate is derived from the dimensionless analysis. The wear rate obtained from the correlation shows better relationship with experimental results.

Practical implications

It is expected that the applications of these results will contribute to the improvement of different concerned mechanical systems and machines.

Originality/value

Considering the lack of correlation among wear rate, natural frequency of the experimental set‐up and other operating parameters, the present research was started to find out suitable correlation and a way of reducing wear rate by applying known natural frequency of vibration at a particular direction. Therefore, in this paper, an attempt is made to investigate the wear behavior of GFRP under natural frequency of the experimental set‐up. It is expected that the applications of these results will contribute to the improvement of different concerned mechanical systems.

Details

Industrial Lubrication and Tribology, vol. 62 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2003

Mayela Zamora, Manus Henry and Christian Peter

The use of frequency output for measurement transmission remains common in the design of smart transmitters. Conventional methods of frequency generation, based on counting clock…

Abstract

The use of frequency output for measurement transmission remains common in the design of smart transmitters. Conventional methods of frequency generation, based on counting clock cycles, have a precision which is inversely proportional to the frequency to be generated. Consequently, frequency output precision could be much lower than the measurement precision. This paper describes a simple frequency generation technique which, when implemented in low‐cost hardware, provides a precision of 10−6 per cent for all frequencies. The method represents an intermediate non‐available frequency by dithering between two exact frequencies. Averaging over some reasonably short timescale provides the desired frequency to high precision.

Details

Sensor Review, vol. 23 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 January 2007

Fatma Ben Salem and Ahmed Masmoudi

This paper aims to discuss a comprehensive analysis of the effects of torque and flux hysteresis bands on the inverter average switching frequency considering an induction machine…

Abstract

Purpose

This paper aims to discuss a comprehensive analysis of the effects of torque and flux hysteresis bands on the inverter average switching frequency considering an induction machine drive under the control of the Takahashi DTC strategy.

Design/methodology/approach

The analysis of the effects of torque and flux hysteresis bands on the inverter average switching frequency is carried out taking into account the speed range and the sampling period.

Findings

It has been found that the inverter average switching frequency could be more or less taken down according to the speed range and the sampling period by selecting suitable flux and torque hysteresis bands.

Research limitations/implications

This work should be extended by an experimental validation of the established results.

Practical implications

The reduction of the inverter switching frequency is of great importance in direct torque controlled induction motor drive as far as it leads to a decrease of the torque ripple and an increase of the efficiency.

Originality/value

For given torque and flux hysteresis bands, the inverter average switching frequency presents nonlinear shape. Given the fact that the flux switching frequency is a linear function of the speed, one can conclude that the nonlinearity of the inverter average switching frequency is due to the torque switching frequency. This statement has been proven by the introduction of the so‐called focal speeds for the torque switching frequency turns to be null.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 March 2011

Kirubakaran Dhandapani and Rama Reddy Sathi

The purpose of this paper is to present, a novel boost‐active clamp bridge single stage high‐frequency zero voltage soft‐switching‐pulse width modulation (ZVS‐PWM) inverter, which…

Abstract

Purpose

The purpose of this paper is to present, a novel boost‐active clamp bridge single stage high‐frequency zero voltage soft‐switching‐pulse width modulation (ZVS‐PWM) inverter, which converts the utility frequency AC power into high‐frequency AC power with an embedded controller. This single stage high‐frequency inverter is composed of a single‐phase diode bridge rectifier, a non‐smoothing filter, a boost‐active clamp bridge type ZVS‐PWM high‐frequency inverter, and an induction‐heated load with planar type litz wire working coil assembly. Also, the paper discusses how to extend the soft‐switching operation ranges and improve power conversion efficiency.

Design/methodology/approach

The proposed converter is simulated and it is implemented using embedded controller.

Findings

It was found that the single stage high‐frequency induction heating (IH) inverter using boosted voltage function can eliminate the DC and low‐frequency components of the working coil current and reduce the power dissipation of the circuit components and switching devices.

Originality/value

The paper shows that the PWM HF inverter is preferred for IH, since it has reduced switching losses and switching stresses. The paper can be extended to PC‐based wireless control, which can be part of a distributed control system in major industrial heating systems.

Details

Journal of Engineering, Design and Technology, vol. 9 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 April 2014

Michał Lewandowski and Janusz Walczak

A highly accurate method of current spectrum estimation of a nonlinear load is presented in this paper. Using the method makes it possible to evaluate the current injection…

Abstract

Purpose

A highly accurate method of current spectrum estimation of a nonlinear load is presented in this paper. Using the method makes it possible to evaluate the current injection frequency domain model of a nonlinear load from previously recorded time domain voltage and current waveforms. The paper aims to discuss these issues.

Design/methodology/approach

The method incorporates the idea of coherent resampling (resampling synchronously with the base frequency of the signal) followed by the discrete Fourier transform (DFT) to obtain the frequency spectrum. When DFT is applied to a synchronously resampled signal, the spectrum is free of negative DFT effects (the spectrum leakage, for example). However, to resample the signal correctly it is necessary to know its base frequency with high accuracy. To estimate the base frequency, the first-order Prony's frequency estimator was used.

Findings

It has been shown that the presented method may lead to superior results in comparison with window interpolated Fourier transform and time-domain quasi-synchronous sampling algorithms.

Research limitations/implications

The method was designed for steady-state analysis in the frequency domain. The voltage and current waveforms across load terminals should be recorded simultaneously to allow correct voltage/current phase shift estimation.

Practical implications

The proposed method can be used in case when the frequency domain model of a nonlinear load is desired and the voltage and current waveforms recorded across load terminals are available. The method leads to correct results even when the voltage/current sampling frequency has not been synchronized with the base frequency of the signal. It can be used for off-line frequency model estimation as well as in real-time DSP systems to restore coherent sampling of the analysed signals.

Originality/value

The method proposed in the paper allows to estimate a nonlinear load frequency domain model from current and voltage waveforms with higher accuracy than other competitive methods, while at the same time its simplicity and computational efficiency is retained.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2005

Sergey Y. Yurish, Nikolay V. Kirianaki and Ramon Pallàs‐Areny

To provide detailed information about the novel universal frequency‐to‐digital converter UFDC‐1, which can help engineers and researchers to design new digital sensors and…

Abstract

Purpose

To provide detailed information about the novel universal frequency‐to‐digital converter UFDC‐1, which can help engineers and researchers to design new digital sensors and transducers, as well as smart sensors and sensor systems.

Design/methodology/approach

The high performance of the UFDC‐1 is achieved by using four novel measuring methods for frequency‐time parameters. All existing integrated frequency‐to‐digital converters and frequency (time) output sensors have been reviewed and current design requirements for the UFDC‐1 have been formulated.

Findings

The UFDC‐1 enables the transition from traditional analog (voltage and current) sensors output to frequency‐time output. This yields a lot of benefits due to the properties of frequency as informative parameter. No output standardization is necessary, as opposed to the case of analog output sensors. Users can now work with the UFDC‐1, the same as with traditional ADCs. Sensor manufacturers can simply integrate the UFDC‐1 in microsystems and digital output sensors in order to produce serial output or bus capability.

Practical implications

The UFDC‐1 has many applications: obtaining a digital output from any frequency, period, duty‐cycle, time interval, phase‐shift, pulse number output sensors, up to one chip digital sensors design and smart (self‐adaptive) sensors, thanks to its programmable relative error and non‐redundant conversion time. The UFDC‐1 can work with any existing frequency‐time domain sensor to produce a digital output or create multiparametric smart sensors and systems.

Originality/value

This paper fulfils an identified information need and offers practical help to engineers and researchers in designing new digital sensors and transducers, as well as smart sensors and systems using a minimum of hardware.

Details

Sensor Review, vol. 25 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1997

Chongbin Zhao, G.P. Steven and Y.M. Xie

Extends the evolutionary structural optimization method to the solution for the natural frequency optimization of a two‐dimensional structure with additional non‐structural lumped…

Abstract

Extends the evolutionary structural optimization method to the solution for the natural frequency optimization of a two‐dimensional structure with additional non‐structural lumped masses. Owing to the significant difference between a static optimization problem and a structural natural frequency optimization problem, five basic criteria for the evolutionary natural frequency optimization have been established. The inclusion of these criteria into the evolutionary structural optimization method makes it possible to solve structural natural frequency optimization problems for two‐dimensional structures with additional non‐structural lumped masses. Gives two examples to demonstrate the feasibility of the extended evolutionary structural optimization method when it is used to solve structural natural frequency optimization problems.

Details

Engineering Computations, vol. 14 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 January 2024

Tingwei Gu, Shengjun Yuan, Lin Gu, Xiaodong Sun, Yanping Zeng and Lu Wang

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic…

Abstract

Purpose

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic errors when measuring dynamic signals.

Design/methodology/approach

The dynamic characteristics of the force sensor are analyzed by modal analysis and negative step dynamic force calibration test, and the dynamic mathematical model of the force sensor is identified based on a generalized least squares method with a special whitening filter. Then, a compensation unit is constructed to compensate the dynamic characteristics of the force measurement system, and the compensation effect is verified based on the step and knock excitation signals.

Findings

The dynamic characteristics of the force sensor obtained by modal analysis and dynamic calibration test are consistent, and the time and frequency domain characteristics of the identified dynamic mathematical model agree well with the actual measurement results. After dynamic compensation, the dynamic characteristics of the force sensor in the frequency domain are obviously improved, and the effective operating frequency band is widened from 500 Hz to 1,560 Hz. In addition, in the time domain, the rise time of the step response signal is reduced from 0.29 ms to 0.17 ms, and the overshoot decreases from 26.6% to 9.8%.

Originality/value

An effective dynamic calibration and compensation method is proposed in this paper, which can be used to improve the dynamic performance of the strain-gauge-type force sensor and reduce the dynamic measurement error of the force measurement system.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 81000