Search results

1 – 8 of 8
Open Access
Article
Publication date: 25 December 2023

Jiahe Wang, Huajian Li, Chengxian Ma, Chaoxun Cai, Zhonglai Yi and Jiaxuan Wang

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Abstract

Purpose

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Design/methodology/approach

China has built a railway network of over 150,000 km. Ensuring the safety of the existing railway engineering is of great significance for maintaining normal railway operation order. However, railway engineering is a strip structure that crosses multiple complex environments. And railway engineering will withstand high-frequency impact loads from trains. The above factors have led to differences in the deterioration characteristics and maintenance strategies of railway engineering compared to conventional concrete structures. Therefore, it is very important to analyze the key factors that affect the durability of railway structures and propose technologies for durability evaluation.

Findings

The factors that affect the durability and reliability of railway engineering are mainly divided into three categories: material factors, environmental factors and load factors. Among them, material factors also include influencing factors, such as raw materials, mix proportions and so on. Environmental factors vary depending on the service environment of railway engineering, and the durability and deterioration of concrete have different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapid detection methods for five common diseases in railway engineering are also proposed in this paper. These methods can quickly evaluate the durability of existing railway engineering concrete.

Originality/value

The research can provide some new evaluation techniques and methods for the durability of existing railway engineering.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 2 January 2024

Xu Li, Zeyu Xiao, Zhenguo Zhao, Junfeng Sun and Shiyuan Liu

To explore the economical and reasonable semi-rigid permeable base layer ratio, solve the problems caused by rainwater washing over the pavement base layer on the slope, improve…

Abstract

Purpose

To explore the economical and reasonable semi-rigid permeable base layer ratio, solve the problems caused by rainwater washing over the pavement base layer on the slope, improve its drainage function, improve the water stability and service life of the roadbed pavement and promote the application of semi-rigid permeable base layer materials in the construction of asphalt pavement in cold regions.

Design/methodology/approach

In this study, three semi-rigid base course materials were designed, the mechanical strength and drainage properties were tested and the effect and correlation of air voids on their performance indexes were analyzed.

Findings

It was found that increasing the cement content increased the strength but reduced the air voids and water permeability coefficient. The permeability performance of the sandless material was superior to the dense; the performance of the two sandless materials was basically the same when the cement content was 7%. Overall, the skeleton void (sand-containing) type gradation between the sandless and dense types is more suitable as permeable semi-rigid base material; its gradation is relatively continuous, with cement content? 4.5%, strength? 1.5 MPa, water permeability coefficient? 0.8 cm/s and voids of 18–20%.

Originality/value

The study of permeable semi-rigid base material with large air voids could help to solve the problems of water damage and freeze-thaw damage of the base layer of asphalt pavements in cold regions and ensure the comfort and durability of asphalt pavements while having good economic and social benefits.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 19 March 2024

Feng Chen, Zhongjin Wang, Dong Zhang and Shuai Zeng

Explore the development trend of chemically-improved soil in railway engineering.

Abstract

Purpose

Explore the development trend of chemically-improved soil in railway engineering.

Design/methodology/approach

In this paper, the technical standards home and abroad were analyzed. Laboratory test, field test and monitoring were carried out.

Findings

The performance design system of the chemically-improved soil should be established.

Originality/value

On the basis of the performance design, the test methods and standards for various properties of chemically-improved soil should be established to evaluate the improvement effect and control the engineering quality.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 24 August 2023

Chiara Bertolin and Filippo Berto

This article introduces the Special Issue on Sustainable Management of Heritage Buildings in long-term perspective.

Abstract

Purpose

This article introduces the Special Issue on Sustainable Management of Heritage Buildings in long-term perspective.

Design/methodology/approach

It starts by reviewing the gaps in knowledge and practice which led to the creation and implementation of the research project SyMBoL—Sustainable Management of Heritage Buildings in long-term perspective funded by the Norwegian Research Council over the 2018–2022 period. The SyMBoL project is the motivation at the base of this special issue.

Findings

The editorial paper briefly presents the main outcomes of SyMBoL. It then reviews the contributions to the Special Issue, focussing on the connection or differentiation with SyMBoL and on multidisciplinary findings that address some of the initial referred gaps.

Originality/value

The article shortly summarizes topics related to sustainable preservation of heritage buildings in time of reduced resources, energy crisis and impacts of natural hazards and global warming. Finally, it highlights future research directions targeted to overcome, or partially mitigate, the above-mentioned challenges, for example, taking advantage of no sestructive techniques interoperability, heritage building information modelling and digital twin models, and machine learning and risk assessment algorithms.

Article
Publication date: 7 December 2022

Ahmed Mohammed, Tarek Zayed, Fuzhan Nasiri and Ashutosh Bagchi

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to…

Abstract

Purpose

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to formulate a pavement resilience index while incorporating asset management and the associated resilience indicators from the authors’ previous research work.

Design/methodology/approach

This paper introduces a set of holistic-based key indicators that reflect municipal infrastructure resiliency. Thenceforth, the indicators were integrated using the weighted sum mean method to form the proposed resilience index. Resilience indicators weights were determined using principal components analysis (PCA) via IBM SPSS®. The developed framework for the PCA was built based on an optimization model output to generate the required weights for the desired resilience index. The output optimization data were adjusted using the standardization method before performing PCA.

Findings

This paper offers a mathematical approach to generating a resilience index for municipal infrastructure. The statistical tests conducted throughout the study showed a high significance level. Therefore, using PCA was proper for the resilience indicators data. The proposed framework is beneficial for asset management experts, where introducing the proposed index will provide ease of use to decision-makers regarding pavement network maintenance planning.

Research limitations/implications

The resilience indicators used need to be updated beyond what is mentioned in this paper to include asset redundancy and structural asset capacity. Using clustering as a validation tool is an excellent opportunity for other researchers to examine the resilience index for each pavement corridor individually pertaining to the resulting clusters.

Originality/value

This paper provides a unique example of integrating resilience and asset management concepts and serves as a vital step toward a comprehensive integration approach between the two concepts. The used PCA framework offers dynamic resilience indicators weights and, therefore, a dynamic resilience index. Resiliency is a dynamic feature for infrastructure systems. It differs during their life cycle with the change in maintenance and rehabilitation plans, systems retrofit and the occurring disruptive events throughout their life cycle. Therefore, the PCA technique was the preferred method used where it is data-based oriented and eliminates the subjectivity while driving indicators weights.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 18 April 2024

S. Sarkar

Globally, consumer’s inclination towards functional foods had noticed due to their greater health consciousness coupled with enhanced health-care cost. The fact that probiotics…

Abstract

Purpose

Globally, consumer’s inclination towards functional foods had noticed due to their greater health consciousness coupled with enhanced health-care cost. The fact that probiotics could promote a healthier gut microbiome led projection of probiotic foods as functional foods and had emerged as an important dietary strategy for improved human health. It had established that ice cream was a better carrier for probiotics than fermented milked due to greater stability of probiotics in ice cream matrix. Global demand for ice cream boomed and probiotic ice cream could have been one of the most demanded functional foods. The purpose of this paper was to review the technological aspects and factors affecting probiotic viability and to standardize methodology to produce functional probiotic ice cream.

Design/methodology/approach

Attempt was made to search the literature (review and researched papers) to identify diverse factors affecting the probiotic viability and major technological challenge faced during formulation of probiotic ice cream. Keywords used for data searched included dairy-based functional foods, ice cream variants, probiotic ice cream, factors affecting probiotic viability and health benefits of probiotic ice cream.

Findings

Retention of probiotic viability at a level of >106 cfu/ml is a prerequisite for functional probiotic ice creams. Functional probiotic ice cream could have been produced with the modification of basic mix and modulating technological parameters during processing and freezing. Functionality can be further enhanced with the inclusion of certain nutraceutical components such as prebiotics, antioxidant, phenolic compounds and dietary fibres. Based upon reviewed literature, suggested method for the manufacture of functional probiotic ice cream involved freezing of a probiotic ice cream mix obtained by blending 10% probiotic fermented milk with 90% non-fermented plain ice cream mix for higher probiotic viability. Probiotic ice cream with functional features, comparable with traditional ice cream in terms of technological and sensory properties could be produced and can crop up as a novel functional food.

Originality/value

Probiotic ice cream with functional features may attract food manufacturers to cater health-conscious consumers.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 20 December 2022

Hamsavathi Kannan, Soorya Prakash K. and Kavimani V.

The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement…

Abstract

Purpose

The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement in bending strength, to increase confinement and to repair damages caused by cracking. In the early decades, using BF for composite materials shaped BF as an excellent physical substance with necessary mechanical properties, highlighting the significant procedures ability.

Design/methodology/approach

Specimens were casted with U-wrapped BF and then evaluated based on flexural tests. In the test carried over for flexural fortifying assessment, BF reinforcements demonstrated a definitive quality improvement in the case of the subjected control sample; ultimately, the end impacts depend upon the applied test parameters. From the outcomes introduced in this comparison, for the double-wrapped sample, the modifications improved by 12% than that of the single-wrapped beam, which is identified to subsist for a better strengthening of new-age retrofitting designs.

Findings

The current research deals with the retrofitting of RC beam by conducting a comparative experiment on wrapping of BF (single or double BF wrapping) in improving the mechanical behavior of concrete.

Originality/value

It can be shown from the experimental results that increasing the number of layers has significant effect on basalt strengthened beams.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 February 2022

Muralidhar Vaman Kamath, Shrilaxmi Prashanth, Mithesh Kumar and Adithya Tantri

The compressive strength of concrete depends on many interdependent parameters; its exact prediction is not that simple because of complex processes involved in strength…

Abstract

Purpose

The compressive strength of concrete depends on many interdependent parameters; its exact prediction is not that simple because of complex processes involved in strength development. This study aims to predict the compressive strength of normal concrete and high-performance concrete using four datasets.

Design/methodology/approach

In this paper, five established individual Machine Learning (ML) regression models have been compared: Decision Regression Tree, Random Forest Regression, Lasso Regression, Ridge Regression and Multiple-Linear regression. Four datasets were studied, two of which are previous research datasets, and two datasets are from the sophisticated lab using five established individual ML regression models.

Findings

The five statistical indicators like coefficient of determination (R2), mean absolute error, root mean squared error, Nash–Sutcliffe efficiency and mean absolute percentage error have been used to compare the performance of the models. The models are further compared using statistical indicators with previous studies. Lastly, to understand the variable effect of the predictor, the sensitivity and parametric analysis were carried out to find the performance of the variable.

Originality/value

The findings of this paper will allow readers to understand the factors involved in identifying the machine learning models and concrete datasets. In so doing, we hope that this research advances the toolset needed to predict compressive strength.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 8 of 8