Search results

1 – 10 of 118
Article
Publication date: 17 October 2016

Zhang Hai-ou, Rui Wang, Liye Liang and Wang Gui-lan

The paper aims to introduce the fabrication of a medium steel aircraft part by hybrid deposition and micro-rolling technology (HDMR) and illustrate its advantages, microstructure…

Abstract

Purpose

The paper aims to introduce the fabrication of a medium steel aircraft part by hybrid deposition and micro-rolling technology (HDMR) and illustrate its advantages, microstructure features and mechanical properties of the part.

Design/methodology/approach

The HDMR technology contains two procedures happening almost at the same time: the welding deposition procedure and then the micro-rolling procedure. It takes the gas metal arc welding as the heat source to melt a metal wire and deposit metal in the welding deposition procedure. The metal just deposited is rolled synchronously by a micro roller following the welding torch in micro-rolling procedure almost at the same time layer by layer. The paper presents a contrast of the grain morphology of metal parts produced respectively by HDMR and freedom arc deposition (FAD) and the mechanical properties of metal parts of the same metal from HDMR casting, forging and FAD methods.

Findings

HDMR breaks the dendrite grain of welding beads into the fine crisscross grains. The mechanical properties of metal parts are improved distinctly by the micro-rolling procedure compared to casting, forging and FAD.

Practical implications

In addition, the application of HDMR technology has succeeded in the fabrication of an eligible aircraft metal part, which is quite difficult to achieve using other additive manufacturing (AM) or casting technologies.

Originality/value

HDMR has the advantage of equiponderance manufacturing by micro-rolling compared to other AM technologies. The metal part fabricated by HDMR technology obtains the fine crisscross grains and brings hope for AM metal components with excellent mechanical properties for aircraft applications.

Article
Publication date: 23 September 2021

Nitish P. Gokhale and Prateek Kala

This study aims to develop and demonstrate a deposition framework for the implementation of a region-based adaptive slicing strategy for the Tungsten Inert Gas (TIG) welding-based…

Abstract

Purpose

This study aims to develop and demonstrate a deposition framework for the implementation of a region-based adaptive slicing strategy for the Tungsten Inert Gas (TIG) welding-based additive manufacturing system. The present study demonstrates a deposition framework for implementing a novel region-based adaptive slicing strategy termed as Fast Interior and Accurate Exterior with Constant Layer Height (FIAECLH).

Design/methodology/approach

The mentioned framework has been developed by performing experiments using the design of experiments and analyzing the experimental data. Analysis results have been used to obtain the mathematical function to integrate customization in the process. The paper, in the end, demonstrates the FIAECLH framework for implementing region-based adaptive slicing strategy on the hardware level.

Findings

The study showcase a new way of implementing the region-based adaptive slicing strategy to arc-based metal additive manufacturing. The study articulating a new strategy for its implementation in all types of wire and arc additive manufacturing processes.

Originality/value

Wire-arc-based technology has the potential to deliver cost-effective solutions for metal additive manufacturing. The research on arc welding-based processes is being carried out in different dimensions. To deposit parts with complex geometry and better dimensional accuracy implementation of a novel region-based adaptive slicing strategy for the arc-based additive manufacturing process is an essential task. The successful implementation of an adaptive slicing strategy would ease the fabrication of complex geometry in less time. This paper accomplishes this need of implementing a region-based adaptive slicing strategy as no experimental investigation has been reported for the TIG-based additive manufacturing process.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 August 2022

Jayaprakash Sharma Panchagnula and Suryakumar Simhambhatla

Amongst various additive manufacturing (AM) techniques for realizing the complex metallic objects, weld-deposition (arc)-based directed energy AM technique is attaining more focus…

Abstract

Purpose

Amongst various additive manufacturing (AM) techniques for realizing the complex metallic objects, weld-deposition (arc)-based directed energy AM technique is attaining more focus over commercially available powder bed fusion techniques. This is because of the capability of high deposition rates, high power and material utilization, simpler setup and less initial investment of arc-based AM. Nevertheless, realization of sudden overhanging features through arc-based weld-deposition techniques is still a challenging task because of the necessity of support structures. This paper aims to describe a novel methodology for producing complex metallic objects with sudden overhangs without using supports.

Design/methodology/approach

The realization of complex metallic objects with sudden overhangs (without using supports) is possible by reorienting the workpiece and/or deposition head at every instance using higher order kinematics (5-axis setup) to make sure the overhanging feature is in line to the deposition direction.

Findings

In the absence of universally applicable support mechanism, deposition of overhanging features remains one of the main challenges in AM. A separate support structure is often necessary for depositing the overhanging features. Small overhang features are usually possible by a little overextension from the previous layer. Nevertheless, deposition of large gradually varying overhangs and sudden overhangs with complex features without support structures is a challenging task in any AM process. This demands higher order kinematics which calls for inclined and/or orthogonal slicing and area filling.

Originality/value

The unique aspect of this paper is the identification of sudden overhang feature from a tessellated computer-aided design (.stl) file and generates an orthogonal tool path for deposition for sudden overhangs. An in-house MATLAB routine has been developed and presented for performing the same. This methodology helps in realization of sudden overhangs without use of supports. To validate proposed technique, various illustrative case studies have been taken up for deposition.

Article
Publication date: 17 May 2021

Xuewei Fang, Chuanqi Ren, Lijuan Zhang, Changxing Wang, Ke Huang and Bingheng Lu

This paper aims at fabricating large metallic components with high deposition rates, low equipment costs through wire and wire and arc additive manufacturing (WAAM) method, in…

Abstract

Purpose

This paper aims at fabricating large metallic components with high deposition rates, low equipment costs through wire and wire and arc additive manufacturing (WAAM) method, in order to achieve the morphology and mechanical properties of manufacturing process, a bead morphology prediction model with high precision for ideal deposition of every pass was established.

Design/methodology/approach

The dynamic response of the process parameters on the bead width and bead height of cold metal transfer (CMT)-based AM was analyzed. A laser profile scanner was used to continuously capture the morphology variation. A prediction model of the deposition bead morphology was established using response surface optimization. Moreover, the validity of the model was examined using 15 groups of quadratic regression analyzes.

Findings

The relative errors of the predicted bead width and height were all less than 5% compared with the experimental measurements. The model was then preliminarily used with necessary modifications, such as further considering the interlayer process parameters, to guide the fabrication of complex three-dimensional components.

Originality/value

The morphology prediction of WAAMed bead is a critical issue. Most research has focused on the formability and defects in CMT-based WAAM and little research on the effect of process parameters on the morphology of the deposited layer in CMT-based WAAM has been conducted. To test the sensitivities of the processing parameters to bead size, the dynamic response of key parameters was investigated. A regression model was established to guide the process parameter optimization for subsequent multi-layer or component deposition.

Details

Rapid Prototyping Journal, vol. 27 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 December 2020

Bing Liu, Hongyao Shen, Rongxin Deng, Zeyu Zhou, Jia’ao Jin and Jianzhong Fu

Additive manufacturing based on arc welding is a fast and effective way to fabricate complex and irregular metal workpieces. Thin-wall metal structures are widely used in the…

Abstract

Purpose

Additive manufacturing based on arc welding is a fast and effective way to fabricate complex and irregular metal workpieces. Thin-wall metal structures are widely used in the industry. However, it is difficult to realize support-free freeform thin-wall structures. This paper aims to propose a new method of non-supporting thin-wall structure (NSTWS) manufacturing by gas metal arc welding (GMAW) with the help of a multi-degree of freedom robot arm.

Design/methodology/approach

This study uses the geodesic distance on the triangular mesh to build a scalar field, and then the equidistant iso-polylines are obtained, which are used as welding paths for thin-wall structures. Focusing on the possible problems of interference and the violent variation of the printing directions, this paper proposes two types of methods to partition the model mesh and generate new printable iso-polylines on the split meshes.

Findings

It is found that irregular thin-wall models such as an elbow, a vase or a transition structure can be deposited without any support and with a good surface quality after applying the methods.

Originality/value

The experiments producing irregular models illustrate the feasibility and effectiveness of the methods to fabricate NSTWSs, which could provide guidance to some industrial applications.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 September 2023

Amrit Raj Paul, Manidipto Mukherjee and Mohit Kumar Sahu

The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This…

Abstract

Purpose

The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This study also aims to analyse the metallographic properties of the SS–Cu and Al–Cu interfaces and their mechanical properties.

Design/methodology/approach

The study used transitional deposition of SS–Al material over each other by incorporating Cu as interlayer between the two. The scanning electron microscope analysis, energy dispersive X-ray analysis, X-ray diffractometer analysis, tensile testing and micro-hardness measurement were performed to investigate the interface characteristics and mechanical properties of the SS–Al transitional wall.

Findings

The study discovered that the WA-DED process with a Cu interlayer worked well for the deposition of SS–Al transitional walls. The formation of solid solutions of Fe–Cu and Fe–Si was observed at the SS–Cu interface rather than intermetallic compounds (IMCs), according to the metallographic analysis. On the other hand, three different IMCs were formed at the Al–Cu interface, namely, Al–Cu, Al2Cu and Al4Cu9. The study also observed the formation of a lamellar structure of Al and Al2Cu at the hypereutectic phase. The mechanical testing revealed that the Al–Cu interface failed without significant deformation, i.e. < 4.73%, indicating the brittleness of the interface.

Originality/value

The study identified the formation of HCP–Fe at the SS–Cu interface, which has not been previously reported in additive manufacturing literature. Furthermore, the study observed the formation of a lamellar structure of Al and Al2Cu phase at the hypereutectic phase, which has not been previously reported in SS–Al transitional wall deposition.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 July 2023

Shekhar Srivastava, Rajiv Kumar Garg, Anish Sachdeva, Vishal S. Sharma, Sehijpal Singh and Munish Kumar Gupta

Gas metal arc-based directed energy deposition (GMA-DED) process experiences residual stress (RS) developed due to heat accumulation during successive layer deposition as a…

Abstract

Purpose

Gas metal arc-based directed energy deposition (GMA-DED) process experiences residual stress (RS) developed due to heat accumulation during successive layer deposition as a significant challenge. To address that, monitoring of transient temperature distribution concerning time is a critical input. Finite element analysis (FEA) is considered a decisive engineering tool in quantifying temperature and RS in all manufacturing processes. However, computational time and prediction accuracy has always been a matter of concern for FEA-based prediction of responses in the GMA-DED process. Therefore, this study aims to investigate the effect of finite element mesh variations on the developed RS in the GMA-DED process.

Design/methodology/approach

The variation in the element shape functions, i.e. linear- and quadratic-interpolation elements, has been used to model a single-track 10-layered thin-walled component in Ansys parametric design language. Two cases have been proposed in this study: Case 1 has been meshed with the linear-interpolation elements and Case 2 has been meshed with the combination of linear- and quadratic-interpolation elements. Furthermore, the modelled responses are authenticated with the experimental results measured through the data acquisition system for temperature and RS.

Findings

A good agreement of temperature and RS profile has been observed between predicted and experimental values. Considering similar parameters, Case 1 produced an average error of 4.13%, whereas Case 2 produced an average error of 23.45% in temperature prediction. Besides, comparing the longitudinal stress in the transverse direction for Cases 1 and 2 produced an error of 8.282% and 12.796%, respectively.

Originality/value

To avoid the costly and time-taking experimental approach, the experts have suggested the utilization of numerical methods in the design optimization of engineering problems. The FEA approach, however, is a subtle tool, still, it faces high computational cost and low accuracy based on the choice of selected element technology. This research can serve as a basis for the choice of element technology which can predict better responses in the thermo-mechanical modelling of the GMA-DED process.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2019

Rong Li and Jun Xiong

An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially…

Abstract

Purpose

An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially thin-walled parts. The purpose of this study is to present an investigation into predicting the residual stress distributions of a thin-walled component with geometrical features.

Design/methodology/approach

A coupled thermo-mechanical finite element model considering a general Goldak double ellipsoidal heat source is built for a thin-walled component with geometrical features. To confirm the accuracy of the model, corresponding experiments are performed using a positional deposition method in which the torch is tilted from the normal direction of the substrate. During the experiment, the thermal cycle curves of locations on the substrate are obtained by thermocouples. The residual stresses on the substrate and part are measured using X-ray diffraction. The validated model is used to investigate the thermal stress evolution and residual stress distributions of the substrate and part.

Findings

Decent agreements are achieved after comparing the experimental and simulated results. It is shown that the geometrical feature of the part gives rise to an asymmetrical transversal residual stress distribution on the substrate surface, while it has a minimal influence on the longitudinal residual stress distribution. The residual stress distributions of the part are spatially uneven. The longitudinal tensile residual stress is the prominent residual stress in the central area of the component. Large wall-growth tensile residual stresses, which may cause delamination, appear at both ends of the component and the substrate–component interfaces.

Originality/value

The predicted residual stress distributions of the thin-walled part with geometrical features are helpful to understand the influence of geometry on the thermo-mechanical behavior in GMA-based additive manufacturing.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 August 2022

Avinash Mishra, Amrit Raj Paul, Manidipto Mukherjee, Rabesh Kumar Singh and Anuj Kumar Sharma

The purpose of this research is to show the characteristics of a Cu–Ti dissimilar interface produced by a wire arc-based additive manufacturing process. The purpose of this…

Abstract

Purpose

The purpose of this research is to show the characteristics of a Cu–Ti dissimilar interface produced by a wire arc-based additive manufacturing process. The purpose of this research was to determine the viability of the Cu–Ti interface for the fabrication of functionally graded structures (FGS) using the wire arc additive manufacturing (WAAM) process.

Design/methodology/approach

This paper used the WAAM process with variable current vis-à-vis heat input to demonstrate multiple Ti-6Al-4V (Ti64) and C11000 dissimilar fabrications. The hardness and microstructure of the dissimilar interfaces were investigated thoroughly. The formation of Cu–Ti intermetallic at the Ti64/Cu fusion interface is been revealed by scanning electron microscopy and energy dispersive X-ray analysis, while X-ray diffraction was used to identify various Cu–Ti intermetallic phases. The effect of microstructure on interfacial sensitivity and hardness are also investigated.

Findings

The formation of CuTi intermetallic and the β-phase transformation in Ti-6Al-4V are found to be heat input dependent. The Cu diffusion length increases as the heat input for Ti64 deposition increases, resulting in a greater Cu–Ti intermetallic thickness. The Cu–Ti interface properties improve when the heat input is less than approximately 250 J/mm or the deposition current is less than 90 A. The microhardness ranges from 55 to 650 HV from the Cu-side to the interface and from 650 to 350 HV from the interface to the Ti-side. Higher current increases interface hardness, which increases brittleness and makes the interface more prone to interfacial cracking.

Originality/value

Nonlinear components are needed for a variety of extreme engineering applications, which can be met by FGS with varying microstructure, composition and properties. FGS produced using the WAAM process is a novel concept that requires further investigation. Despite numerous studies on Ti-clad Cu, information on Cu–Ti interface characteristics is lacking. Furthermore, the suitability of the WAAM process for the development of Cu–Ti FGS is unknown. As a result, the goal of this research article is to fill these gaps by providing preliminary information on the feasibility of developing Cu–Ti FGS via the WAAM process.

Details

Rapid Prototyping Journal, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 October 2021

Joao Duarte, Isabel Espírito Santo, M. Teresa T. Monteiro and A. Ismael F. Vaz

This paper aims to provide an approach to print shell-type objects using a 5-axis printer. The proposed approach takes advantage of the two additional printer degrees of freedom

Abstract

Purpose

This paper aims to provide an approach to print shell-type objects using a 5-axis printer. The proposed approach takes advantage of the two additional printer degrees of freedom to provide a curved layer path planning strategy.

Design/methodology/approach

This paper addresses curved layer path planning on a 5-axis printer. This printer considers movements along the three usual axes together with two additional axes at the printing table (rotation and tilt), allowing to build more complex and reliable objects. Curved layer path planning is considered where polygons obtained from the slicing stage are approximated by linear and cubic splines. The proposed printing strategy consists in building an inner core supporting structure followed by outer curved layers.

Findings

The curved layer path planning strategy is validated for shell-type objects by considering a 5-axis printer simulator. An example with an aeronautic object is presented to illustrate the proposed approach.

Originality/value

The paper presents an approach to curved layer path planning on a 5-axis printer, for shell-type objects.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 118