Search results

1 – 10 of 387
Article
Publication date: 7 March 2016

Jing Yang, Lingjiu Zhou and Zhengwei Wang

The vortex ropes in draft tube of Francis turbine always cause fluctuation and vibration, which consequently threaten the safety and stability of hydro turbines. The purpose of…

Abstract

Purpose

The vortex ropes in draft tube of Francis turbine always cause fluctuation and vibration, which consequently threaten the safety and stability of hydro turbines. The purpose of this paper is to use a cavitation flow computational method to simulate spiral vortex ropes under part load conditions and columnar vortex ropes under high-load conditions in draft tube. The unsteady cavitating flow characteristics in draft tube and its interaction with runner cavitation were analyzed.

Design/methodology/approach

The calculation method was verified by cavitation simulation around a 3D hydrofoil. The results show that the Large Eddy Simulation (LES) turbulence model with the Zwart-Gerber-Blemari cavitation model have comparative advantage in cavitation simulations whether from capture of cavity shape or prediction of pressure changes. So it was chosen to simulate the two-phase cavitation flow in Francis turbine. The boundary conditions for inlet and outlet were set to inlet total pressure and outlet static pressure. The finite volume method with the central difference was adopted to discretize the equations.

Findings

The calculated Thoma number agreed well with the experimental data. The vortex rope diameter and length increased with the cavitation development for both of the two types of vortex ropes conditions. The maximum peak-to-peak values of pressure pulsations located in the draft tube elbow part under all of the Thoma numbers conditions. Under spiral vortex rope conditions, the pressure pulsation in the same section of draft tube cone show obviously phase shift. The vortex rope affects the development of runner cavitation, which induces the symmetric and axisymmetric cavitation region in the suction side of blades for spiral and columnar vortex rope condition, respectively.

Research limitations/implications

The mesh independence had been checked only in non-cavitation flow; in addition, the mesh density did not well satisfy the requirements of LES due to the limitations of computing power. The higher mesh density on a simplified model with one blade flow path and the entire draft tube may be helpful for obtaining more precise results.

Originality/value

The spiral and columnar vortex ropes in a Francis turbine were compared and analyzed. The annular hydraulic jump appeared in the columnar vortex rope conditions has little effects on the pressure pulsations. The uneven flow field caused by spiral vortex led to the asymmetric cavitation development.

Details

Engineering Computations, vol. 33 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 October 2021

Adel Ghenaiet

This study aims to investigate the trajectories of sand particles and erosion wear in a hydraulic turbine model.

Abstract

Purpose

This study aims to investigate the trajectories of sand particles and erosion wear in a hydraulic turbine model.

Design/methodology/approach

The Lagrangian-based approach is used to track large numbers of sand particles and determine their impact through the hydro turbine components. The tracking procedure includes the stochastic eddy interaction model and the squeeze film effect. The number of particles, sizes and release positions are conformed to the particle concentration and size distribution. The impact locations, frequency and conditions of impacts are used to estimate the erosion rates and thereby the eroded mass from the distributor vane and the rotor blade and their deteriorated geometry.

Findings

The patterns of erosion in the stationary and rotating parts differ significantly and the effect of the initial position of the runner blade is elucidated. The distributor vane is characterized by a widespread of erosion over the pressure side. Typically, the surface beyond the throat and the root and tip junctions are the regions prone to erosion wear. The entry region of the runner blade is subject to a high number of impacts resulting in high erosion rates visible from the forepart of the blade pressure side.

Practical implications

The erosion patterns and geometry deterioration may serve to evaluate the drop in the hydraulic performance and to select the appropriate surface coating to extend the lifetime of the turbomachinery parts and reduce the maintenance cost.

Originality/value

Erosion developments reveal a strong dependence on the blade position against the distributor vane and the particle size and concentration level.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2001

Trygve Thomessen, Terje K. Lien and Per K. Sannæs

Presents a robot control system dedicated to grinding large Francis turbines. The control system is based on an active force feedback system using a three‐axes force sensor…

1353

Abstract

Presents a robot control system dedicated to grinding large Francis turbines. The control system is based on an active force feedback system using a three‐axes force sensor attached to the robot’s end effector. This system offers high flexibility and robustness against workpiece positioning and grinding tool wear. It provides control of the grinding process parameters ensuring high productivity in addition to good grinding performance and grinding tool economy. The system was experimentally tested out on a MultiCraft 560 grinding robot.

Details

Industrial Robot: An International Journal, vol. 28 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 December 2017

Chunbao Liu, Weiyang Bu, Dong Xu, Yulong Lei and Xuesong Li

This paper aims to improve performance prediction and to acquire more detailed flow structures so as to analyze the turbulence in complex rotor-stator flow.

Abstract

Purpose

This paper aims to improve performance prediction and to acquire more detailed flow structures so as to analyze the turbulence in complex rotor-stator flow.

Design/methodology/approach

Hydraulic retarder as typical fluid machinery was numerically investigated by using hybrid Reynolds-averaged Navier–Stokes (RANS)/large eddy simulation (LES) models CIDDES Algebraic Wall-Modeled Large Eddy Simulation (LES) (WMLES) S-Ω and dynamic hybrid RANS/LES (DHRL). The prediction results were compared and analyzed with a RANS model shear stress transport (SST) k-omega which was a recommended choice in engineering.

Findings

The numerical results were verified by experiment and indicated that the predicted values for three hybrid turbulence models were more accurate. Then, the transient flow field was further analyzed visually in terms of turbulence statistics, Reynolds number, pressure-streamline, vortex structure and eddy viscosity ratio. The results indicated that HRL approaches could capture unsteady flow phenomena.

Practical implications

This study achieves both in performance prediction improvement and better flow mechanism understanding. The computational fluid dynamics (CFD) could be used instead of flow visualization to a certain extent. The improved CFD method, the fine computational grid and the reasonable simulation settings jointly enhance the application of CFD in the rotor-stator flow.

Originality/value

The improvement was quite encouraging compared with the reported literatures, contributing to the CFD playing a more important role in the flow machinery. DHRL provided the detailed explanation of flow transport between rotor and stator, which was not reported before. Through it, the flow mechanism can be better understood.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2016

WenRuo Zhu, ZhongXin Gao, YongJun Tang, JianGuang Zhang and Li Lu

The purpose of this paper is to analyze the ability of turbulence models to model the flow field in the runner of a Francis turbine. Although the complex flow in the turbine can…

Abstract

Purpose

The purpose of this paper is to analyze the ability of turbulence models to model the flow field in the runner of a Francis turbine. Although the complex flow in the turbine can be simulated by CFD models, the prediction accuracy still needs to be improved. The choice of the turbulence model is one key tool that affects the prediction accuracy of numerical simulations.

Design/methodology/approach

This study used the SST k-w and RNG k-e turbulence models, which can both accurately predict complex flow fields in numerical simulations, to simulate the flow in the entire flow passage of a Francis turbine with the results compared against experimental data for the performance and blade pressure distribution in the turbine to evaluate the applicability of the turbulence models.

Findings

The results show that the SST k-w turbulence model more accurately predicts the turbine performance than the RNG turbulence model. However, the blade surface pressures predicted by the SST k-w turbulence model were basically identical to those predicted by the RNG k-e turbulence model, with both accurately predicting the experimental data.

Research limitations/implications

Due to the lack of space, the method used to measure the blade surface pressure distributions is not introduced in this paper.

Practical implications

Turbine performance and flow field pressure in the runner, which are the basis of turbine preliminary performance judgment and optimization through CFD, can be used to judge the rationality of the turbine runner design. The paper provides an evidence for the turbulence selection in numerical simulation to predict turbine performance and flow field pressure in the runner and improves the CFD prediction accuracy.

Originality/value

This paper fulfils a test of the flow field pressure in the runner, which provide an evidence for judge the adaptability of turbulence model on the flow field in runner. And this paper also provides important evaluations of two turbulence models for modeling the flow field pressure distribution in the runner of a Francis turbine to improve the accuracy of CFD models for predicting turbine performance.

Details

Engineering Computations, vol. 33 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 March 2011

Xiao Yexiang, Wang Zhengwei and Yan Zongguo

The purpose of this paper is to investigate, experimentally and numerically, the pressure pulse characteristics and unsteady flow behavior in a Francis turbine runner for moderate…

Abstract

Purpose

The purpose of this paper is to investigate, experimentally and numerically, the pressure pulse characteristics and unsteady flow behavior in a Francis turbine runner for moderate flow heads. The pressure pulses in the runner blade passage were predicted numerically for both moderate and high heads. The calculations were used to partition the turbine operating regions and to clarify the various for the unsteady flow behavior, especially the blade channel vortex in the runner.

Design/methodology/approach

Experimental and numerical analyses of pressure pulse characteristics at moderate flow heads in a Francis turbine runner were then extended to high heads through numerical modeling with 3D unsteady numerical simulations performed for a number of operating conditions. The unsteady Reynolds‐averaged Navier‐Stokes equations with the k‐ω‐based shear stress transport turbulence model were used to model the unsteady flow within the entire flow passage of a Francis turbine.

Findings

The dominate frequency of the predicted pressure pulses at runner inlet agree with the experimental results in the head cover at moderate flow heads. The influence of the blade passing frequency causes the simulated peak‐to‐peak amplitudes in the runner inlet to be larger than in the head cover. The measured and predicted pressure pulses at different positions along the runner are comparable. At the most unstable operating condition of 0.5a0 guide vane opening, the pressure pulses in the runner blade passage are due to the blade channel vortex and the rotor‐stator interference. The predictions show that the frequency of the blade channel vortex is relatively low and it changes with the operating conditions.

Originality/value

The paper describes a study which experimentally and numerically investigated the pressure pulses characteristics in a Francis turbine runner at moderate flow heads. The pulse characteristics and unsteady flow behavior due to the blade channel vortex in the runner at high heads were investigated numerically, with the turbine operating regions then partitioned to identify safe operating regions.

Details

Engineering Computations, vol. 28 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 April 2010

Xiao Yexiang, Wang Zhengwei, Yan Zongguo, Li Mingan, Xiao Ming and Liu Dingyou

The purpose of this paper is to describe how the hydraulic performance and pressure fluctuations in the entire flow passage of a Francis turbine were predicted numerically for the…

Abstract

Purpose

The purpose of this paper is to describe how the hydraulic performance and pressure fluctuations in the entire flow passage of a Francis turbine were predicted numerically for the highest head. The calculations are used to partition the turbine operating regions and to clarify the unsteady flow behavior in the entire flow passage including the blade channel vortex in the runner and vortex rope in the draft tube.

Design/methodology/approach

Three‐dimensional unsteady numerical simulations were performed for a number of operating conditions at the highest head. The unsteady Reynolds‐averaged Navier‐Stokes equations with the kω based SST turbulence model were solved to model the unsteady flow within the entire flow passage of a Francis turbine.

Findings

The predicted pressure fluctuations in the draft tube agree well with the experimental results at low heads. However the peak‐to‐peak amplitudes in the spiral case are not as well predicted so the calculation domain and the inlet boundary conditions need to be improved. The unsteady simulation results are better than the steady‐state results. At the most unstable operating condition of case a0.5h1.26, the pulse in the flow passage is due to the rotor‐stator interference between the runner and the guide vanes, the blade channel vortex in the runner blade passage and the vortex rope in the draft tube.

Originality/value

This study investigates the characteristics of the dominant unsteady flow frequencies in different parts of the turbine for various guide vane openings at the highest head. The unsteady flow patterns in the turbine, including the blade channel vortex in the runner and the helical vortex rope in the draft tube, are classified numerically, and the turbine operating regions are partitioned to identify safe operating regions.

Details

Engineering Computations, vol. 27 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 March 2016

Yexiang Xiao, Wei Zhu, Zhengwei Wang, jin zhang, Chongji Zeng and Yangyang Yao

Numerically analyzed the flow characteristic and explored the hydrodynamic mechanism of the S-shaped region formation of a Francis pump-turbine.

Abstract

Purpose

Numerically analyzed the flow characteristic and explored the hydrodynamic mechanism of the S-shaped region formation of a Francis pump-turbine.

Design/methodology/approach

Three-dimensional steady and unsteady simulations were performed for a number of operating conditions at the optimal guide vanes opening. The steady Reynolds averaged Navier-Stokes equations with the SST turbulence model were solved to model the internal flow within the entire flow passage. The predicted discharge-speed curve agrees well with the model test at generating mode. This paper compared the hydrodynamic characteristics of for off-design cases in S-shaped region with the optimal operating case, and more analysis focuses particularly on very low positive and negative discharge cases with the same unit speed.

Findings

At runaway case towards smaller discharge, the relative circumferential velocity becomes stronger in the vaneless, which generates the “water ring” and blocks the flow between guide vane and runner. The runner inlet attack angle becomes larger, and the runner blade passages nearly filled with flow separation and vortexes. The deterioration of runner blade flow leads to the dramatic decrease of runner torque, which tends to reduce the runner rotation speed. In this situation, the internal flow can’t maintain the larger rotating speed at very low positive discharge cases, so the unit discharge-speed curves bend to S-shaped near runaway case.

Originality/value

The analysis method of four off-design cases on S-shaped region with the comparison of optimal operation case and the calculated attack angles are adopted to explore the mechanism of S characteristic. The flow characteristic and quantitative analysis all explain the bending of the unit discharge-speed curves.

Details

Engineering Computations, vol. 33 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 10 July 2018

Jing Yang, Qingjuan Hu, Zhengwei Wang, Jinghuan Ding and Xianyu Jiang

For Francis turbine, the vortex flow in the draft tube plays an important role in the safe and efficient operating of hydraulic turbine. The swirling flow produced at the blade…

Abstract

Purpose

For Francis turbine, the vortex flow in the draft tube plays an important role in the safe and efficient operating of hydraulic turbine. The swirling flow produced at the blade trailing edge at off-design conditions has been proved to be the fundamental reason of the vortex flow. Exploring the swirling flow variations in the non-cavitation flow and cavitation flow field is an effective way to explain the mechanism of the complex unsteady flow in the draft tube.

Design/methodology/approach

The swirling flow in different cavitation evolution stages of varying flow rates was studied. The swirl number, which denotes the strength of the swirling flow, was chosen to systematically analyze the swirling flow changes with the cavitation evolutions. The Zwart–Gerber–Blemari cavitation model and SST turbulence model were used to simulate the two-phase cavitating flow. The finite volume method was used to discrete the equations in the unsteady flow field simulation. The Frozen Rotor Stator scheme was used to transfer the data between the rotor-stator interfaces. The inlet total pressure was set to inlet boundary condition and static pressure was set to outlet boundary condition.

Findings

The results prove that the mutual influences exist between the swirling flow and cavitation. The swirling flow was not only affected by the load but also significantly changed with the cavitation development, because the circumferential velocity decrease and axial velocity increase presented with the cavitation evolution. At the high load conditions, the system stability may improve with the decreasing swirling flow strength.

Research limitations/implications

Further experimental and simulation studies still need to verify and estimate the reasonability of the swirling flow seen as the cavitation inception signal.

Originality/value

One interesting finding is that the swirl number began to change as the inception cavitation appeared. This is meaningful for the cavitation controlling in the Francis turbine.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2017

Lingjiu Zhou, Meng Liu, Zhengwei Wang, Demin Liu and Yongzhi Zhao

This study analyzes the blade channel vortices inside Francis runner with a particular focus on the identification of different types of vortices and their causes.

Abstract

Purpose

This study analyzes the blade channel vortices inside Francis runner with a particular focus on the identification of different types of vortices and their causes.

Design/methodology/approach

A single-flow passage of the Francis runner with refined mesh and periodic boundary conditions was used for the numerical simulation to reduce the computational resource. The steady-state Reynolds-averaged Navier–Stokes equations closed with the k-ω shear–stress transport (SST) turbulence model were solved by ANSYS CFX to determine the flow field. The vortices were identified by the second largest eigenvalue of velocity.

Findings

Four types of vortices were identified inside the runner. Three types were related to the inlet flow. The last one (Type 4) was caused by the reversed flow near the runner crown and had the lowest pressure inside the core near the runner outlet. Thus, in the blade channel vortex inception line, Type 4 vortex would appear earlier than the other three ones. Besides, the Type 4 vortex emerged from the crown and shed toward the blade-trailing edge. And its location moved from near the crown down to near the band when the unit speed increased or unit discharge decreased.

Research limitations/implications

Although the refined mesh was used and the main vortices in the Francis runner were well predicted, the current mesh is not enough to accurately predict the lowest pressure in the channel vortex core.

Practical/implications

This knowledge is instructive in the runner blade design and troubleshooting related to the channel vortex.

Originality/value

This study gives an overview of the main observed blade channel vortices and their causes, and points out the important role the reversed flow plays in the formation of blade channel vortices. This knowledge is instructive in the runner blade design and troubleshooting related to blade channel vortices.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 387