Search results

1 – 9 of 9
Article
Publication date: 30 January 2024

Burçak Zehir, Mirsadegh Seyedzavvar and Cem Boğa

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components…

Abstract

Purpose

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components, considering different build orientations and layer thicknesses. The primary objectives include the following. Conducting mixed-mode fracture and mechanical analyses on SLS PA12 parts. Investigating the influence of build orientation and layer thickness on the mechanical properties of SLS-printed components. Examining the fracture mechanisms of SLS-produced Arcan fracture and tensile specimens through experimental methods and finite element analyses.

Design/methodology/approach

The research used a combination of experimental techniques and numerical analyses. Tensile and Arcan fracture specimens were fabricated using the SLS process with varying build orientations (X, X–Y, Z) and layer thicknesses (0.1 mm, 0.2 mm). Mechanical properties, including tensile strength, modulus of elasticity and critical stress intensity factor, were quantified through experimental testing. Mixed-mode fracture tests were conducted using a specialized fixture, and finite element analyses using the J-integral method were performed to calculate fracture toughness. Scanning electron microscopy (SEM) was used for detailed morphological analysis of fractured surfaces.

Findings

The investigation revealed that the highest tensile properties were achieved in samples fabricated horizontally in the X orientation with a layer thickness of 0.1 mm. Additionally, parts manufactured with a layer thickness of 0.2 mm exhibited favorable mixed-mode fracture behavior. The results emphasize the significance of build orientation and layer thickness in influencing mechanical properties and fracture behavior. SEM analysis provided valuable insights into the failure mechanisms of SLS-produced PA12 components.

Originality/value

This study contributes to the field of additive manufacturing by providing a comprehensive analysis of the mixed-mode fracture behavior and mechanical properties of SLS-produced PA12 components. The investigation offers novel insights into the influence of build orientation and layer thickness on the performance of such components. The combination of experimental testing, numerical analyses and SEM morphological observations enhances the understanding of fracture behavior in additive manufacturing processes. The findings contribute to optimizing the design and manufacturing of high-quality PA12 components using SLS technology.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 March 2024

Vishal Mishra, Ch Kapil Ror, Sushant Negi and Simanchal Kar

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

56

Abstract

Purpose

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

Design/methodology/approach

The continuous metal fiber composite was 3D printed using recycled and virgin acrylonitrile butadiene styrene-blended filament (RABS-B) in the ratio of 60:40 and postused continuous brass wire (CBW). The 3D printing was done using an in-nozzle impregnation technique using an FFF printer installed with a self-modified nozzle. The tensile and single-edge notch bend (SENB) test samples are fabricated to evaluate the tensile and fracture toughness properties compared with VABS and RABS-B samples.

Findings

The tensile and SENB tests revealed that RABS-B/CBW composite 3D printed with 0.7 mm layer spacing exhibited a notable improvement in Young’s modulus, ultimate tensile strength, elongation at maximum load and fracture toughness by 51.47%, 18.67% and 107.3% and 22.75% compared to VABS, respectively.

Social implications

This novel approach of integrating CBW with recycled thermoplastic represents a significant leap forward in material science, delivering superior strength and unlocking the potential for advanced, sustainable composites in demanding engineering fields.

Originality/value

Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

477

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 1 December 2023

Zhe Du, Changjie Chen and Xinhou Wang

Stab-resistant body armor (SRBA) is used to protect the body from sharp knives. However, most SRBA materials currently have the disadvantages of large weight and thickness. This…

Abstract

Purpose

Stab-resistant body armor (SRBA) is used to protect the body from sharp knives. However, most SRBA materials currently have the disadvantages of large weight and thickness. This paper aims to prepare lightweight and high-performance SRBA by 3D printing truss structure and resin-filling method.

Design/methodology/approach

The stab resistance truss structure was prepared by the fused deposition modeling method, and the composite structure was formed after filling with resin for dynamic and quasi-static stab tests. The optimized structural plate can meet the standard GA68-2019. Digital image correlation technology was used to analyze the local strain changes during puncture. The puncture failure mode was summarized by the final failure morphologies. The explicit dynamics module in ANSYS Workbench was used to analyze the design of the overlapped structure stab resistance process in this paper.

Findings

The stab resistance performance of the 3D-printed structural plate is affected by the internal filling pattern. The stab resistance performance of 3D-printed structural parts was significantly improved after resin filling. The 50%-diamond-PLA-epoxy, with a thickness of only 5 mm was able to meet the stab resistance standard. Resins are used to increase the strength and hardness of the material but also to increase crack propagation and reduce the toughness of the material. The overlapping semicircular structure was inspired by the exoskeleton structure of the demon iron beetle, which improved the stab resistance between gaps. The truss structure can effectively disperse stress for toughening. The filled resin was reinforced by absorbing impact energy.

Originality/value

The 3D-printed resin-filled truss structure can be used to prepare high-performance stab resistance structural plates, which balance the toughness and strength of the overall structure and ultimately reduce the thickness and weight of the SRBA.

Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Content available
Article
Publication date: 8 April 2024

José A.F.O. Correia and Shun-Peng Zhu

Abstract

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Article
Publication date: 4 January 2024

Sofiane Talbi, Mokadem Salem, Belaïd Mechab, Tewfik Ghomari, Ahmed Allem, Belabbes Bachir Bouiadjra and Benelmaarouf Mehdi

This study provides an analysis of patch repair for cracked aircraft structures. Delamination is a type of damage that affects the patch's behavior. The purpose of this study is…

Abstract

Purpose

This study provides an analysis of patch repair for cracked aircraft structures. Delamination is a type of damage that affects the patch's behavior. The purpose of this study is to assess the influence of delamination on repair performance.

Design/methodology/approach

An analytical and numerical study using the finite element method was conducted for a cracked plate repaired with a patch containing a pre-existing delamination defect. The method for defining the contact pair surfaces and modeling the delamination interaction within the patch interface is specified using the virtual crack closure technique (VCCT) approach.

Findings

The efficiency of the repair is measured in terms of the J-integral. The effects of delamination initiation, mechanical loading, crack length and patch stacking sequences are presented. It is noted that in mode I, delamination propagation is only significant at node A. The numerical results are in good agreement with those of the analytical solution found in the literature. It is observed that the patch's behavior is strongly dependent on loading, crack size and stacking sequences in terms of reducing the structure's lifespan, especially in the presence of delamination.

Originality/value

The numerical modeling presented by the VCCT approach is highly valuable for studying delamination evolution. The influence of loading, crack size and stacking sequences on repair performance is discussed in this work.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 12 April 2024

Yanwei Dai, Libo Zhao, Fei Qin and Si Chen

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Abstract

Purpose

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Design/methodology/approach

Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.

Findings

The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.

Practical implications

The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.

Originality/value

This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 9 of 9