Search results

1 – 10 of over 3000
Article
Publication date: 30 January 2024

Burçak Zehir, Mirsadegh Seyedzavvar and Cem Boğa

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components…

Abstract

Purpose

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components, considering different build orientations and layer thicknesses. The primary objectives include the following. Conducting mixed-mode fracture and mechanical analyses on SLS PA12 parts. Investigating the influence of build orientation and layer thickness on the mechanical properties of SLS-printed components. Examining the fracture mechanisms of SLS-produced Arcan fracture and tensile specimens through experimental methods and finite element analyses.

Design/methodology/approach

The research used a combination of experimental techniques and numerical analyses. Tensile and Arcan fracture specimens were fabricated using the SLS process with varying build orientations (X, X–Y, Z) and layer thicknesses (0.1 mm, 0.2 mm). Mechanical properties, including tensile strength, modulus of elasticity and critical stress intensity factor, were quantified through experimental testing. Mixed-mode fracture tests were conducted using a specialized fixture, and finite element analyses using the J-integral method were performed to calculate fracture toughness. Scanning electron microscopy (SEM) was used for detailed morphological analysis of fractured surfaces.

Findings

The investigation revealed that the highest tensile properties were achieved in samples fabricated horizontally in the X orientation with a layer thickness of 0.1 mm. Additionally, parts manufactured with a layer thickness of 0.2 mm exhibited favorable mixed-mode fracture behavior. The results emphasize the significance of build orientation and layer thickness in influencing mechanical properties and fracture behavior. SEM analysis provided valuable insights into the failure mechanisms of SLS-produced PA12 components.

Originality/value

This study contributes to the field of additive manufacturing by providing a comprehensive analysis of the mixed-mode fracture behavior and mechanical properties of SLS-produced PA12 components. The investigation offers novel insights into the influence of build orientation and layer thickness on the performance of such components. The combination of experimental testing, numerical analyses and SEM morphological observations enhances the understanding of fracture behavior in additive manufacturing processes. The findings contribute to optimizing the design and manufacturing of high-quality PA12 components using SLS technology.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 June 2021

Cem Boğa

Acrylonitrile butadiene styrene (ABS), as a light and high strength thermoplastic polymer, has found extensive applications in different industries. Fused filament fabrication…

Abstract

Purpose

Acrylonitrile butadiene styrene (ABS), as a light and high strength thermoplastic polymer, has found extensive applications in different industries. Fused filament fabrication, known as three-dimensional (3D) printing technique is considered a rapid prototyping technique that is frequently applied for production of samples of ABS material. Therefore, the purpose of this study is to investigate the mechanical and fracture behavior of such materials and the techniques to improve such properties.

Design/methodology/approach

Experimental and numerical analyses have been conducted to investigate the effects of internal architecture and chopped carbon fiber (CF) fillers on the mechanical properties and mixed mode fracture behavior of the ABS samples made by 3D printing technique. Four different filling types at 70% filling ratios have been used to produce tensile and special fracture test samples with pure and CF filled ABS filaments (CF-ABS) using 3D process. A special fixture has been developed to apply mixed mode loading on fracture samples, and finite element analyses have been conducted to determine the geometric function of such samples at different loading angles.

Findings

It has been determined that the printing pattern has a significant effect on the mechanical properties of the sample. The addition of 15% CF to pure ABS resulted in a significant increase in tensile strength of 46.02% for line filling type and 15.04% for hexagon filling type. It has been determined that as the loading angle increases from 0° to 90°, the KIC value decreases. The addition of 15% CF increased the KIC values for hexagonal and line filling type by 64.14% and 12.5%, respectively.

Originality/value

The damage that will occur in ABS samples produced in 3D printers depends on the type, amount, filling speed, filling type, filling ratio, filling direction and mechanical properties of the additives. All these features are clearly dependent on the production method. Even if the same additive is used, the production method difference shows different microstructural parameters, especially different mechanical properties.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 July 2022

Mirsadegh Seyedzavvar and Cem Boğa

The purpose of this study was to investigate the effects of CaCO3 nanoparticles on the mechanical properties, and mixed-mode fracture behavior of acrylonitrile butadiene styrene…

159

Abstract

Purpose

The purpose of this study was to investigate the effects of CaCO3 nanoparticles on the mechanical properties, and mixed-mode fracture behavior of acrylonitrile butadiene styrene 3D printed samples with different internal architectures.

Design/methodology/approach

The nanocomposite filaments have been fabricated by a melt-blending technique. The standard tensile, compact tension and special fracture test samples, named Arcan specimens, have been printed at constant extrusion parameters and at four different internal patterns. A special fixture was used to carry out the mixed-mode fracture tests of Arcan samples. Finite element analyses using the J-integral method were performed to calculate the fracture toughness of such samples. The fractographic observations were used to evaluate the mechanism of fracture at different concentrations of nanoparticles.

Findings

The addition of CaCO3 nanoparticles has resulted in a significant increase in the fracture loading of the samples, although this increase was not consistent for all the filling patterns, being more significant for samples with linear and triangular structures. According to the fractographic observations, the creation of uniformly distributed microvoids due to the blunting effect of nanoparticles and 3D stress state at the crack tip in the samples with linear and triangular structures justify the enhancement in the fracture loading by the addition of CaCO3 nanoparticles in the matrix.

Originality/value

There is a significant gap in the knowledge of the effects of different nanoparticles in the polymer samples produced by the fused filament fabrication process. One of such nanoparticles is an inorganic CaCO3 nanoparticle that has been frequently used as nanofillers to improve the thermomechanical properties of thermoplastic polymers. Here, experimental and numerical studies have been conducted to investigate the effects of such nanoadditives on the mechanical and fracture behavior of 3D printed samples.

Details

Rapid Prototyping Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2019

Pietro Lanzillotti, Julien Gardan, Ali Makke and Naman Recho

The purpose of this paper is the application and the improvement of a previous method based on an acrylonitrile butadiene styrene thread deposition in fused deposition modeling…

Abstract

Purpose

The purpose of this paper is the application and the improvement of a previous method based on an acrylonitrile butadiene styrene thread deposition in fused deposition modeling. To gain up to 20 per cent of mechanical strength in comparison with a classical deposition, this method suggests a smart threads deposition in the principal stresses direction.

Design/methodology/approach

In this work, the authors use single edge notched bend specimens with mixed mode I+II loading cases to study the influence of the thread deposition on the fracture toughness of the specimens. For this purpose, finite elements simulations have been used to evaluate the fracture toughness of the specimens through the calculation of the J integral. The study presents a method to compare the optimized and classical specimens and also to gather data and suggest a numerical model for this optimized deposition. For this reason, tensile tests are carried out to characterize the mechanical behavior of the printed samples with respect to the raster angle. Extra attention has been paid to 45 per cent samples behavior that shows a pronounced plasticity before the fracture. This interprets partially the improvement in the fracture behavior of the single edge notched bend samples.

Findings

The results show an enhancement through this optimization which leads to an increase of the maximal force in fracture up to 20 per cent and the fracture toughness of the specimens with stress intensity factors KI and KII increases about 30 per cent.

Originality/value

Additive manufacturing is increasingly gaining importance not only in prototyping but also in industrial production. For this reason, the characterization and the optimization of these technologies and their materials are fundamental. An adaptive deposition through a smart material based on specific mechanical behaviors would be an advance.

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 May 2019

Kehang Yu, Chen Yang, Jun Wang, Jiabo Yu and Yi Yang

The purpose of this paper is to study the variation of the mechanical strength and failure modes of solder balls with reducing diameters under conditions of multiple reflows.

Abstract

Purpose

The purpose of this paper is to study the variation of the mechanical strength and failure modes of solder balls with reducing diameters under conditions of multiple reflows.

Design/methodology/approach

The solder balls with diameters from 250 to 760 µm were mounted on the copper-clad laminate by 1-5 reflows. The strength of the solder balls was tested by the single ball shear test and pull test, respectively. The failure modes of tested samples were identified by combing morphologies of fracture surfaces and force-displacement curves. The stresses were revealed and the failure explanations were assisted by the finite element analysis for the shear test of single solder ball.

Findings

The average strength of a smaller solder ball (e.g. 250 µm in diameter) is higher than that of a larger one (e.g. 760 µm in diameter). The strength of smaller solder balls is more highly variable with multiple reflows than larger diameters balls, where the strength increased mostly with the number of reflows. According to load-displacement curves or fracture surface morphologies, the failure modes of solder ball in the shear and pull tests can be categorized into three kinds.

Originality/value

The strength of solder balls will not deteriorate when the diameter of solder ball is decreased with a reflow, but a smaller solder ball has a higher failure risk after multiple reflows. The failure modes for shear and pull tests can be identified quickly by the combination of force-displacement curves and the morphologies of fracture surfaces.

Details

Soldering & Surface Mount Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 June 2015

F.G.A. Silva, M.F.S.F. de Moura, N Dourado, F. A. M. Pereira, J.J.L. Morais, M. I. R. Dias, Paulo J. Lourenço and Fernando M. Judas

Fracture characterization of human cortical bone under pure mode I loading was performed in this work. The purpose of this paper is to validate the proposed test and procedure…

Abstract

Purpose

Fracture characterization of human cortical bone under pure mode I loading was performed in this work. The purpose of this paper is to validate the proposed test and procedure concerning fracture characterization of human cortical bone under pure mode I loading.

Design/methodology/approach

A miniaturized version of the double cantilever beam (DCB) test was used for the experimental tests. A data reduction scheme based on crack equivalent concept and Timoshenko beam theory is proposed to overcome difficulties inherent to crack length monitoring during the test. The application of the method propitiates an easy determination of the Resistance-curves (R-curves) that allow to define the fracture energy under mode I loading from the plateau region. The average value of fracture energy was subsequently used in a numerical analysis with element method involving cohesive zone modelling.

Findings

The excellent agreement obtained reveals that the proposed test and associated methodology is quite effective concerning fracture characterization of human cortical bone under pure mode I loading.

Originality/value

A miniaturized version of traditional DCB test was proposed for cortical human bone fracture characterization under mode I loading owing to size restrictions imposed by human femur. In fact, DCB specimen propitiates a longer length for self-similar crack propagation without undertaking spurious effects. As a consequence, a R-curve was obtained allowing an adequate characterization of cortical bone fracture under mode I loading.

Details

International Journal of Structural Integrity, vol. 6 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 August 2019

Tao Wang, Zhanli Liu, Yue Gao, Xuan Ye and Zhuo Zhuang

The interaction between hydraulic fracture (HF) and natural fracture (NF) in naturally fractured rocks is critical for hydraulic fracturing. This paper aims to focus on…

170

Abstract

Purpose

The interaction between hydraulic fracture (HF) and natural fracture (NF) in naturally fractured rocks is critical for hydraulic fracturing. This paper aims to focus on investigating the development of tensile and shear debonding zone on the NF caused by the stresses produced by HF, and the influence of NF’s debonding behavior on the interaction between HF and NF.

Design/methodology/approach

Theoretically, tensile and shear debonding modes of NF are considered, two dimensionless parameters are proposed to characterize the difficulty of tensile and shear failure of NF, respectively. Numerically, a finite element model combining the extended finite element method and cohesive zone method (CZM) is proposed to study NF’s debonding behavior and its influence on the interaction between HF and NF.

Findings

Both theoretical analysis and numerical simulation show the existence of two debonding modes. The numerical results also show that the HF can cross, offset or propagate along the NFs depending on the parameters’ value, resulting in different fracture network and stimulated reservoir volume. When they are large, the NF’s debonding area is small, HF tends to cross the NF and the fracture network is simple; when they are small, the NF’s debonding area is large, HF will propagate along the NF. In addition, HF is easier to propagate along with NF under tensile debonding mode while it is easier to pass through NF under shear debonding mode.

Originality/value

The theoretical and numerical considerations are taken into account in the influence of the debonding of NFs on the interaction between HFs and NFs and the influence on the formation of the fracture network.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 August 2018

Bin Chen, Song Cen, Andrew R. Barron, D.R.J. Owen and Chenfeng Li

The purpose of this paper is to systematically investigate the fluid lag phenomena and its influence in the hydraulic fracturing process, including all stages of fluid-lag…

1161

Abstract

Purpose

The purpose of this paper is to systematically investigate the fluid lag phenomena and its influence in the hydraulic fracturing process, including all stages of fluid-lag evolution, the transition between different stages and their coupling with dynamic fracture propagation under common conditions.

Design/methodology/approach

A plane 2D model is developed to simulate the complex evolution of fluid lag during the propagation of a hydraulic fracture driven by an impressible Newtonian fluid. Based on the finite element method, a fully implicit solution scheme is proposed to solve the strongly coupled rock deformation, fluid flow and fracture propagation. Using the proposed model, comprehensive parametric studies are performed to examine the evolution of fluid lag in various geological and operational conditions.

Findings

The numerical simulations predict that the lag ratio is around 5% or even lower at the beginning stage of hydraulic fracture under practical geological conditions. With the fracture propagation, the lag ratio keeps decreasing and can be ignored in the late stage of hydraulic fracturing for typical parameter combinations. On the numerical aspect, whether the fluid lag can be ignored depends not only on the lag ratio but also on the minimum mesh size used for fluid flow. In addition, an overall mixed-mode fracture propagation factor is proposed to describe the relationship between diverse parameters and fracture curvature.

Research limitations/implications

In this study, relatively simple physical models such as linear elasticity for solid, Newtonian model for fluid and linear elasticity fracture mechanics for fracture are used. The current model does not account for such effects like leak off, poroelasticity and softening of rock formations, which may also visibly affect the fluid lag depending on specific reservoir conditions.

Originality/value

This study helps to understand the effect of fluid lag during hydraulic fracturing processes and provides numerical experience in dealing with the fluid lag with finite element simulation.

Details

Engineering Computations, vol. 35 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 April 2022

Meng Xu, Fenglian Sun, Zhen Pan and Yang Liu

The purpose of this paper is to study the temperature cycling reliability of Sn-5Sb-0.5Cu-0.1Ni-0.5Ag/Cu micro solder joints compared with Sn-5Sb/Cu and SAC305/Cu micro solder…

Abstract

Purpose

The purpose of this paper is to study the temperature cycling reliability of Sn-5Sb-0.5Cu-0.1Ni-0.5Ag/Cu micro solder joints compared with Sn-5Sb/Cu and SAC305/Cu micro solder joints, which has important engineering and theoretical significance for the research of micro solder joint reliability. This paper also aims to provide guidance for the selection of solder for third-generation semiconductor power device packaging.

Design/methodology/approach

The shear strength, plasticity, bulk solder hardness and creep performance of three kinds of micro solder joints before and after temperature cycling were studied by nanoindentation and micro shear experiments. Scanning electron microscopy and energy dispersive spectrometry were used to analyze the fracture mode, fracture position and compound composition of the solder joints.

Findings

The bulk solder hardnesses and shear strengths of Sn-5Sb-0.5Cu-0.1Ni-0.5Ag/Cu solder joints were higher than those of Sn-5Sb/Cu and SAC305/Cu solder joints before and after temperature cycling. The indentation depth, creep displacement and creep rate of bulk solders of Sn-5Sb-0.5Cu-0.1Ni-0.5Ag/Cu solder joints were the smallest compared with those of Sn-5Sb/Cu and SAC305/Cu solder joints after the same number of cycles. In addition, the fracture mode and fracture position of the micro solder joints changed before and after temperature cycling.

Originality/value

A new type of solder was developed with excellent temperature cycling performance.

Details

Soldering & Surface Mount Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1991

J. Seyyedi, B. Arsenault and J.P. Keller

Quasi shear and tensile mode stress‐rupture and quasi shear mode creep behaviours were investigated for aged production surface mount soldered connections of 127 mm pitch, rigid…

Abstract

Quasi shear and tensile mode stress‐rupture and quasi shear mode creep behaviours were investigated for aged production surface mount soldered connections of 127 mm pitch, rigid gullwing and J‐bend configurations at ambient and 60°C (on limited specimens) environments. These joints were manufactured by the vapour phase reflow soldering process using a 63Sn‐37Pb solder composition. Metallographic examinations and fractrographic studies were also performed on appropriate specimens to characterise the metallurgical attributes of the solder and the joint failure. A relatively coarse solder microstructure was observed with both joint configurations. The steady‐state creep data of both soldered joints exhibited two distinct creep regimes. A grain boundary‐controlled regime at low loads with a slope of 042 for gullwing and 0?50 for J‐bend joints was followed by a dislocation climb‐controlled regime at high loads with a slope of 0?13 and 0?24 for gullwing and J‐bend configurations, respectively. The log‐log plot of applied load varied linearly with rupture time for the entire load range for the respective soldered joints for both modes of testing at room temperature. A transgranular fracture morphology was found to predominate for the entire load regime for the quasi shear mode tested gullwing joints. A mixed‐mode fracture morphology with predominantly transgranular features was observed for both low and high loading conditions for quasi shear mode tested J‐bend specimens. The steady‐state creep elongation in shear showed a strong dependence on the applied load for both types of soldered joints. This was primarily attributed to the presence of relatively large creep transients, especially at higher loads.

Details

Soldering & Surface Mount Technology, vol. 3 no. 1
Type: Research Article
ISSN: 0954-0911

1 – 10 of over 3000